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Nonlinear Approximation and the Space BV(R?)!

ALBERT COHEN, RONALD DEVORE, PENCHO PETRUSHEV AND HONG XU

ABSTRACT. Given a function f € L2(Q), Q :=[0,1)? and a real number t > 0, let U(f,t) :=
inf epvig) If — g||2L2(I) + tV(g), where the infimum is taken over all functions g € BV
of bounded variation on I. This and related extremal problems arise in several areas of
mathematics such as interpolation of operators and statistical estimation, as well as in digital
image processing. Techniques for finding minimizers g for U(f, ¢) based on variational calculus
and nonlinear partial differential equations have been put forward by several authors ([DMS],
[LOR], [MS], [CL]). The main disadvantage of these approaches is that they are numerically
intensive. On the other hand, it is well-known that more elementary methods based on wavelet
shrinkage solve related extremal problems, for example, the above problem with BV replaced
by the Besov space B{ (L1 (I)) (see e.g. [CDLL]). However, since BV has no simple description
in terms of wavelet coefficients, it is not clear that minimizers for U(f, ¢) can be realized in
this way. We shall show in this paper that simple methods based on Haar thresholding
provide near minimizers for U(f,¢). Our analysis of this extremal problem brings forward
many interesting relations between Haar decompositions and the space BV.

1. Introduction.

Nonlinear approximation has recently played an important role in several problems of
image processing including compression, noise removal, and feature extraction. We have
in mind techniques such as wavelet compression [DJL], wavelet shrinkage or thresholding
[DJKP1], wavelet packets [CW], and greedy algorithms [MZ, DT]. There has also been an
impressive contribution of techniques based on variational calculus and nonlinear partial
differential equations (see e.g. [DMS], [LOR], [MS], [CL]) especially to the problems of
noise removal and image segmentation. The common point between these two approaches
is their ability to adapt to the composite nature of images: edge, textures and smooth
regions should be treated adaptively, a requirement which is certainly not fulfilled by the
classical linear filtering techniques.

One problem which plays an important role in the latter approach is the the following
extremal problem introduced in [LOR]:

Given a function (image) f defined on the unit square, Q := [0,1)%, and a parameter
t >0, find the function g € BV(Q) which attains the infimum

1.1 U(f.t):= inf —ql|? tV i
(11) ()= _int F = dlie +Velo)

Here BV(Q) is the space of functions of bounded variation on @) (see §2 for the definition
of this space) and Vg(f) = |f|pv is the associated semi-norm, i.e. the total variation of f.

I This research was supported by the Office of Naval Research Contracts N0014-91-J1343
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In the practice of noise removal, f represents the noisy image and ¢ is usually chosen to be
proportional to the noise level. The minimizer ¢ then appears as a denoised image. The
functional in (1.1) can also be viewed as a variant of the Mumford and Shah functional
introduced in their celebrated paper [MS] on image processing.

A minimization problem close to (1.1) is also familiar in the context of interpolation of
linear operators: the expression

(1.2) K(f,1) = K(f,1,L2(Q),BV(Q)) := _inf |l —gllL,o) +1Valy),

gEBV(Q)
called the K-functional of f for the pair (L2(Q),BV(Q)), is the basic tool for generating
interpolation spaces between these two spaces by the so-called real method.

Numerical techniques for solving (1.1) based on partial differential equations have been
developed and successfully applied to image processing. The advantage of these techniques
is high performance. Their disadvantage is they are numerically intensive, and require in
practise the approximation of the BV term in U(f,t) by a quadratic term (e.g. [(e +
IV £]1?)'/?) in order to find a solution in reasonable computational time (see [VO] for a
discussion on numerical methods for solving (1.1)).

In comparison, wavelet thresholding methods simply amount to the application of mul-
tiscale decomposition and reconstruction algorithms on the image, and of a thresholding
procedure, which can all be performed in O(N) operations, where N is the number of pix-
els in the image. These methods can be made translation invariant by a cyclic averaging
technique introduced in [CD], which seems to bring significant visual improvement, while
only raising the complexity to O(N log N). On a more theoretical point of view, thresh-
olding procedures have been proved to be optimal, in the minimax sense of asymptotical
statistics, in various non-parametric contexts where the images are typically modelized by
their regularity in Sobolev and Besov classes (see [DJKP2]).

A striking remark (see [CDLL]) is that wavelet thresholding also provides the exact
solution to an extremal problem which is very close to (1.1), namely

(1.3) U(f,t):= gEB%lgl(Q)) 1f = 917,00 + oL, 0

where the Besov space B}(L1(Q)) is taken in place of the (larger) space BV(Q). Both
BV(Q) and Bi(L1(Q)) are smoothness spaces of order one in L1(Q), e.g. the space BV(Q)
is the same as Lip(1, L1(Q)) (see [M], or [DP1] for the definition of the Besov spaces). In
contrast to BV, the B}(L;) norm has a simple equivalent expression as the ¢; norm of the
coefficients in a wavelet basis decomposition f = Yy, fatx (where A denotes the set of
indices for the wavelet basis). One can thus use this decomposition to obtain an equivalent
discrete problem

(1.4) U((fr),t) == (gilglgz [1fx = gal* + tlgall,
A 1)\6/\

whose solution (obtained by minimizing separately on each index \) is exactly given by a
“soft thresholding” procedure at level ¢/2:

(15) gx = sga(fr) max{0, | fa| — #/2}.



The minimization problem (1.3) can thus be solved (up to a constant related to the equiv-
alence between continuous and discrete norms), by a simple wavelet-based procedure.

One could argue that the distinction between the two problems (1.1) and (1.2) is slight.
However, BV seems more adapted to model real images, since it allows sharp edges (i.e.
discontinuities on a line), which cannot occur in a bivariate function that belongs to the
smaller space B}(Ly). This fact is confirmed in the practice of image processing: the
performance of (1.1) for noise removal, for example, seems slightly better than that of
(1.3), at least in aesthetic terms.

We call a family of functions g; a near minimazer for (1.1) if

1.6 — g4||? +tV <(C inf —ql|? +tV
(1.6) 17 = 0lifuie)+1Valo) SC inf IF = llf.i0)+1Velo)

with C an absolute constant (not depending on ¢ or f). A similar definition applies to (1.2).
The question arises whether one could find a near minimizer to (1.1) and (1.2), using simple
non-linear approximation techniques such as wavelet thresholding. Note that in contrast
to B}(L1), we are then allowed to use approximations that have line discontinuities, such
as the multidimensional Haar basis or, more generally, piecewise constant functions. The
main point of this paper is to develop such techniques and to prove that they indeed yield
near minimizers for the problems (1.1) and (1.2).

Our main result in this paper is to show that either of the extremal problems (1.1-2)
has a near minimizer taken from certain “non-linear” spaces X, N > 1, whose elements
are piecewise constants that can be described by N parameters. In the case of wavelet
thresholding, the space X is simply the set of all linear combinations > faHx with at
most N terms and H the bivariate Haar functions.

In order to prove that a given family Y x provides the solution to (1.1) or (1.2), we
shall make use of several ingredients, among which are two types of inequalities that are
frequently used in numerical analysis and approximation theory:

(i) A direct or Jackson type estimate
(L.7) inf |If = gllr.@) < ONTV|flsve)
gEXN

that describes the approximation power of ¥ for functions in BV.
(ii) An wnverse or Bernstein type estimate

(1.8) [FlBvi@) < ONY2(|fllL,c0) i € S,

that describes the smoothness properties of the approximation spaces Y.

When BV is replaced by B}(L;) and Ty is the set of N-terms linear combination in
a sufficiently smooth wavelet basis, these inequalities reduce to simple considerations on
sequences. Since the BV norm has no simple equivalent expression in terms of the wavelet
coefficients (it is actually known that BV is nonseparable), (1.7) and (1.8) (in particular
the direct estimate) are by far less obvious, and will require more involved arguments.
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We shall now give a more precise formulation of our results. We shall denote by ¥%; the
non-linear spaces associated with N-term approximation in the Haar system, i.e.

(1.9) Ni={)_ eHx: ECA, |E| <N},
AEE

where |E| denotes the cardinality of the discrete set E (in the case of a continuous set
Q of RY, |Q| will stand for its volume), and where (Hy)aea is the bivariate Haar system
derived from the univariate system of L]0, 1] by the usual tensor-product construction:

from H® = y and H' := y one defines the multivariate functions

[0,1) 0,1/2) ~ X[1/2,1)

(1.10) H(z):=H(x1)H*(22), e=(e1,e2) €V,

where V is the set consisting of the nonzero vertices of (). The bivariate Haar system for
Ly(Q) consists of the constant function 1 and of all functions

(1.11) p@)=2H (22 —k), e€V,j>0, k€ Z*N2/Q.

We refer to [D] for a general introduction to wavelet bases.

We shall prove that the wavelet thresholding, which is equivalent to approximation by
the elements X%, gives a near minimizer to the extremal problems (1.1) and (1.2) (§9).
However, our proofs are neither direct nor simple. Rather, we prove these results by
considering various types of nonlinear approximation by piecewise constants. Note that
the functions in X% are piecewise constant taking at most 2N values.

To describe the other spaces of piecewise constant functions which we shall use in this
paper we introduce the following notation which will be used throughout the paper. If
is a set of R%, we denote by ¢gq its characteristic function, and by

(112) an(f) = 197! / /.

the average of an Li-function f on (2. By definition, a dyadic cube I is the tensor product
of two dyadic intervals, i.e. I = I(j,k,1)=[277k,27(k+1)) x [2771,277(14+1)). We shall
denote by D := D(Q) the set of all dyadic cubes contained in @), and by Dy(Q) the set of
all dyadic cubes in D(Q) with sidelength 27% (measure 272%). We denote by Sy := Sk(Q)
the space of piecewise constants on the partition Dy(@Q). This is a linear space spanned by
the functions @1, I € Di(Q).

We define the family of non-linear spaces of piecewise constant functions:

(1.13) v=1{D>_cpr; ECD, [E| <N},
Ier

i.e. all linear combinations of at most N characteristic functions of dyadic cubes.

A natural procedure to approximate in X%, is the simple thresholding of wavelet coetf-
ficients. In order to obtain approximations in 3%, one can think of different procedures.
The simplest one is based on a quadtree splitting algorithm: given a tolerance ¢ > 0 and a



function f € Ly(Q), one builds an adaptive partition of @) into dyadic cubes by splitting
into four subcubes each cube I such that the residual

R(I) = Hf - aI(f)HL2(I)7

is larger than e. The procedure is initiated from the unit cube (), and stops when all
residuals are smaller than e, and f is then approximated by f. := 2167?6 ajor, where P,
is the final partition of Q).

The approximation properties of such adaptive algorithms have been studied in [DY].
However, this algorithm does not exploit the full approximation properties of X%, since
it imposes that the cubes involved in the definition of f. are disjoint. One can actually
show by simple counterexamples that this procedure does not yield the direct estimate we
desire in proving (1.1) or (1.2), i.e. too many cubes could be generated to achieve a certain
accuracy in the approximation of certain BV functions.

A more efficient procedure should thus not only involve splitting, but also merging
of cubes, which will amount in using non-disjoint cubes in the definition of a suitable
approximation. In this paper, we shall introduce a “split and merge” algorithm that
produces an approximation of f based on disjoint partitions of () into dyadic rings. By
definition a dyadic ring is the difference between two embedded dyadic cubes, 1.e. any set
of the type

(1.14) K:=1I\J, JclI, I,JeD.

We also consider a dyadic cube to be a degenerate case of a dyadic ring for which J 1s
empty. Throughout this paper, a “cube” will always stand for a dyadic cube, and a “ring”
for a dyadic ring. Our third family of approximation space ¥’ is the set of all functions
of the form

(1.15) f=> capa,

QepP

where P is a set of at most N dyadic rings, that form a partition of ), 1.e. the rings are
disjoint and union to ). Note that (1.11) means that o = @5 — @5 so that X%, C XS .
We can thus use ¥’ to prove results on approximation by X%.

An important point that should be mentioned here is that the nonlinearity of the three
families X%, ¥% and X%, is “controlled” in the sense that they all satisfy

(1.16) YN+ Xu C YoM+

with a an absolute constant. This is obvious in the case of ¥ and X%, with @ = 1. It can
also be proved for Y% (with a larger value of a).

The outline of our paper is the following;:

In §2, we define the spaces BV(Q2) for domains  C R? and recall certain basic properties
of these spaces. In §3, we prove inverse estimates of the type (1.8) for the spaces X%, X},
and X%;.
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In order to study the process of approximation for X%, we prove in §4 the projection
error estimate

(1.17) 1f = aqllz.) < CilflBv(e),
where C is independent of the ring 2. We then prove in §5 the stability estimate
(1.18) 1) aa(fealsvio) < Calflsvio)-

Qep

where C; does not depend on the partition P of ) into disjoint rings. The uniformity of
(1 and Cs is ensured by the the controlled shape of a dyadic ring which cannot be very
anisotropic.

In §6, we introduce our algorithm for approximation by the elements of ¥’ and use
it to prove the Jackson inequality. This algorithm relies on a general result concerning
the existence of partitions of () into rings which are well balanced with respect to a super-
additive cost function. We prove in §7 that this algorithm is also a near best solution to the
extremal problem (1.2). We anticipate therefore that this algorithm will be useful in image
processing but this will not be addressed in the present paper which mostly concentrates
on the theoretical issues.

In §8, we prove the direct estimate for (Haar) wavelet shrinkage, i.e. approximation by
Y%, and we show in §9 that this procedure is stable in BV and provide solutions for the
two extremal problems (1.1) and (1.2). It should be pointed out that the results of these
two sections make important use of the results that we establish for X%, and that so far
we do not know how to prove them in a more direct way.

Finally, we use our results in §10 to identify the interpolation spaces between Ly(Q)

and BV (Q).
Throughout the paper, we give explicit constants for all important inequalities. Most
of them (in particular (Cy, Cy,- -, Cs) that appear in the end of the paper), can probably

be improved using more refined arguments.

2. The space BV(Q).

In this section, we shall define for certain domains Q C R?, the spaces BV(Q) of functions
of bounded variation on €2 and recall some basic properties of this space. While BV(Q)
can be defined for general domains, in this paper, we shall primarily be interested in rings
Q=1\J, where I and J C I are in D(Q).

For a vector u € R?, we define the difference operator A, in the direction u by

(2.1) Au(foe) = fla+p) — fla).

Let Q be any domain in R? For functions f defined on 2, A,(f,x) is defined whenever
x € Qp), where Q(p) :={x: [r,2+p] C Q) and [z, x + p] is the line segment connecting
x and x + p. Note that if © is bounded and p is large enough then Q(p) is empty. Let

e;j, j = 1,2, be the two coordinate vectors in R*. We say that a function f € Li(f) is in
BV(Q) if and only if

2 2
(2.2) Va(f) :==suph™! Z [ ARe; (Fs M Ly(@ihe;)) = }llil% Z [ ARe; (Fs Ly (@(he; )
=1

0<h =



7

is finite. Here, the last equality in (2.2) follows from the fact that |[Apn; (f, )|lL,(@(he;))
is subadditive (see e.g. Theorem 7.11.1 in [HP]). By definition, the quantity Vq(f) is the
variation of f over §. It provides a semi-norm and norm for BV(Q):

(2.3) |flBvie) == Valf); |IfllBve) = [flBvie) + [Ifllz, @)

Let Q = Q4 U Q3 where €y and 25 are disjoint sets. Then for any h > 0 and 7 = 1,2,
one has the inclusion Q4 (he;) U Qa(hej) C Q(he;). Hence, for j = 1,2,

(2.4) [ ARe; (Fs My @uche)) T 11 ARe; (Fs )l ny (@ he;)) < N ARe; (Fs ) 11 (ke ))-

Summing over j and taking the the limit as & tends to 0, we obtain

(2.5) Va,(f) + Va,(f) < Va(f).

By induction, the analogue of (2.5) holds for any finite union of disjoint sets.
We recall the L;-modulus of continuity w( f,#)q which is defined by

(2.6) w(fit)a = sup [|AL(f; )Ly @in)-
[l <t

Here and later |x| := /2% + 22 is the Euclidean metric. For any ring, we have that BV(Q)
is identical with Lip(1, L1(£2)), where the latter set consists of all functions such that

(2.7) [flsvg) = supt™ w(f, t)a
>0

1s finite. We also have

(2.8) |f|§3v(9) < [flpv(e) < 2|f|;3\/(9)'

Indeed, the right inequality in (2.8) is obvious from the definition of the two semi-norms.
The left inequality follows from the fact for any point © € Q(u), u = (p1, pz2), either
[x, 24y eq] and [+ py ey, 24 u] are both contained in Q or [, x4 puges] and [x+ pzeq, x4 ]
are both contained in §2.

For a ring Q = I'\ J, we define D(£2) to be the set of all I € D which are contained in
and similarly, we define Dy () the subset of D(€2) that consists of the cubes of sidelength
27k If 272% < |J|, when J is non empty or if 272% < |I| when Q = I is a cube, we can
define Si(€2) to be the restriction of Sg to Q. For any f € L1(Q2), we define the Pi(f) to
be the orthogonal projection of f onto Si(§2). Then,

(2.9) P(f)= Y arlfler

I1€DL(Q2)

It is easy to prove that whenever f € BV(Q)

(2.10) If = Pl F)llrico) < 27 Valf)



8 ALBERT COHEN, RONALD DEVORE, PENCHO PETRUSHEV AND HONG XU

and

(2.11) Va(Pe(f)) < Va(f).

For a proof of these results see [L, Chapter 3, Lemma 3.2] for the case when 2 is a cube
(the same proof also works for rings).
It is also easy to calculate the BV norm of functions S € Sk(2). For any set A C R?

let £1(A) denote the edges L of the cubes I € Dy(Q)) which are contained in A. We also
denote by Q° the interior of Q, and by Ji, L € L(Q°), the jump in f across L. Then,
(see again [L, Chapter 3, Lemma 3.1])

(2.12) Va(f)=27" > |l

LELL(20)

3. Inverse estimates.

In the introduction, we have introduced three families of non-linear spaces (X%, %
and X75,). We begin our study of these spaces in this section by proving (1.8) for any
ring . We shall obtain specific constants in (1.8) although this is not important for the
theoretical results that follow.

We first treat the space ¥ which appears in wavelet thresholding.

Theorem 3.1. For each f € Y%, we have
(3.1) Vo(f) <8N2(If]lL. ).

Proof. We first observe that any Haar basis function ¢y (see (1.11)) satisfies

(3.2) Vo(ia) <8 = 8[|l 1,

Indeed, if the support of 1y is a square I of side length A = 2%, then it takes the values
+h~! on I. We can calculate V(1)) by (2.12). The jumps across the outer boundary of
I give h™'4h = 4 and those across the inner boundary give at most 2h7'2h = 4. Thus,
(3.2) is proved.

If f=73 yep favaisin X%, then

(3.3) Vo(f) <8 AL SIEM D 1AM < 8N'Y2|[£]lL,.,

AEE AEE

by the Cauchy-Schwarz inequality. O

Remark 3.1. Using that Vo(f) <83 5 |fa], we also obtain the following variant of the
inverse inequality (3.1): Let ¢ > 0 and f = ), .p fa'x be a linear combination of Haar
wavelets such that |fy| > ¢ for all A € E| then

8
(3.4) [flev < < I1£1I7,-

We now prove the Bernstein inequality for X%, by a very similar argument.



Theorem 3.2. For each f € XY, we have

55) Vo(f) < 4f N fllaco

Proof. We first prove that if = I'\ J is any ring contained in @, then

45
(3.6) lpalBy < WH‘PQHLT

To prove this, let { be the side length of I and h¢ be the side length of J. Then, ||¢q H2L2(Q) =

0*(1 — h?). We consider two cases. In the first case, we assume that J is in the interior of
I. Then necessarily, b <1/4. In this case Vg(pq) < 40 + 4(h = 4((1 + h) where the first

term comes from the jump across the outer boundary and the second the jump across the

inner boundary. Since (1—'—2; < é, we have verified (3.6) in this case. In the second case,

we assume that J shares an edge with I. Then Vg(pq) < (40 — (h) + 3(h = 4((1 + L /2).

Since % <25/12 for 0 < h <1/2,(3.6) follows in this case as well.

If feXiy, then f =73 cp fapa with P a partition of () into rings, then

(3.7) Volf) 4\/f > lfalllgall, < 4\/\[1\71/2”}(!\ Lo

QepP

by the Cauchy-Schwarz inequality. O

We close this section by using ideas from [DP] to prove the Bernstein inequality for 3.
If E is a finite collection of dyadic cubes, then for each I € E we define B;(E) to be the
set of all cubes J that are maximal in I, 1.e., J C I, J € E, and J is not contained in
another cube with these properties. It was shown in Lemma 6.1 of [DP] that any set E
can be embedded in a set E' with |E'| < 4|E| and

(3.8) |B;(E')| <4, forall T€E'

Theorem 3.3. For each f € ¥, we have

28
=NV fllae)-

(3.9) Volf) < 7

Proof. If f € 3%, we can write f = > ;5 fror, where E C D(Q) and |E| < N. Let E
be a set which contains E, satisfies (3.8), and such that |E'| < 4N. Then, we can also
represent f as

(3.10) F= Y drer.

Ier’
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Ficure 1

If I € E', we define I' := T\ U{J : J € By(E")}. The functions ¢, I € E', have disjoint
supports and

(3.11) F=> crer.

Ier’

with e7:= )" ;o; JeER dy. We can assume that all o appearing in (3.11) are nonzero.
For each of these functions, we have a basic inverse estimate

14
(312 Valer) < —ller ..

The proof of (3.12) is similar to that of (3.2) and (3.6) except that we have to check more
cases. The quotient

Voler)

e L,



11

takes its largest value for the configuration in Figure 1 which gives the constant %. We
leave this verification to the reader.
Using the Cauchy-Schwarz inequality, we find

Vo(f) < ) lerlVoler)

Ier’
14
<= ledler|
\/§ Ier’
28 Y2 28
< FV (Z erl?ller ) = =N fllza@)- O
\/§ Ier’ \/§

4. Approximation by a constant on a ring-shaped domain.

In this section, we shall give bounds for the Ls-error of approximation of a BV func-
tion by a constant on a ring-shaped domain. At first, we shall make certain preliminary
constructions which will be used in the proofs of these results as well as those of the next
section.

Let © be a ring contained in Q: Q := 11 \ Iy, Iy, € D(Q), Iy C I;. We shall consider
piecewise constant functions in Si(2). We assume that k is large enough that 272% < |I;|
and 272k < |Iy| if Iy is not empty. We can therefore write |I;| = m3272% and |Iy| = m2272*
with mg, m; positive integers and mgy < mg.

Let Bi(€2) denote the external layer of boundary cubes for €2, i.e. the set of cubes
I € Di(R?) such that I is not in Dy(Q) but I N Q contains a line segment. Let (a,b) be
the lower left vertex of I;. We index each cube I € Dy(I;) by the pair of integers (1, j),
1 <4,7 < my,such that (a,b)+27%(j —1/2,1—1/2) is in I (we have purposefully reversed
and j in the indexing so that ¢ will now correspond to a row and j to a column). Boundary
cubes can be indexed in the same way with ¢, j now allowed to take the values 0 and m +1.
Note that, in general, there are two types of boundary cubes: the interior boundary cubes
(which are contained in Iy) and the ezterior boundary cubes which are outside of I;. If T
is indexed by (¢,7), we say that I is in row ¢ and column j. We say a row ¢ (respectively
column j) is unobstructed if all cubes I € Dy(I1) from row ¢ (respectively column j) are in
Dr(2).

By an admaussible path p for €2, we shall mean a piecewise linear path with the following
properties. Each segment of p is parallel to a coordinate axis and connects a center of a
cube I € Dy(Q) U Bi(Q) to the center of another cube J € Di(2) U Bi(§2). Each edge
L € Li(QUON) is transversed at most once by p and each edge not in this set is never
transversed by p.

For each ¢ = 1,...,mq, there are either two or four boundary cubes in By(€2) which are
in row ¢. For each distinct pair of these cubes (I, J), we shall construct an admissible path
pi(I,J) which connects I to J as follows.

If there are exactly two such boundary cubes for row 7, we take the strictly horizontal
path which connects the center of I to the center of J.

Consider next the case where there are four boundary cubes in row 2. The indices of
these cubes are (7,7), j = jo,J1,J2,J3, where jo =0 < j; < j3 < js = my + 1. Moreover,
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J1 > mg and jz — j2 > mg. Let I and J be two of these boundary cubes with indices (¢, )
and (¢,5') and j < j'. If j = jo and j' = j1, we take the path p;(I,J) to again be the
strictly horizontal path connecting the center of I to the center of J. We proceed similarly
if j =j2 and ' = js.

We now consider the remaining cases. Let j(i) € [1,mg] be congruent to i mod my.
Then, the column with index j(7) is unobstructed. Similarly, the column with index
J'(2) == mq — j(¢) + 1 is unobstructed. Also, for one of the two choices iy := i £ my, the
row with index 7; is unobstructed.

If I, J are a pair for which we have not yet constructed p;(I,.J), then we construct
this path as the concatenation of the the five segments which connect the centers of the
cubes with the following indices in the specified order: (¢,7), (7,j(7)), (¢1,5(2)), (¢1,7'(2)),
(1,7'(2)), (¢,75"). It follows that p;(I,J) is an admissible path.

We shall need one last type of row path that occurs only in the case that row 2 is
obstructed but there are only two boundary cubes. This case occurs when I touches the
boundary of I;. Let I be the boundary cube in row ¢ which touches the boundary of I;.
We assume that I has index (¢,0) (the case when I has index (¢,m; + 1) is handled in a
symmetric manner). We let j(¢) and 7; be as above. We let p(I) be the admissible path
which consists of the three segments which connect the centers of the cubes with indices
(7,0), (¢,7(2)), (¢1,7(7)) and (i1,mq 4+ 1) in that order.

We make the analogous construction of paths which connect the boundary cubes in
column j and denote these paths by ~;(I, J).

We shall now use these paths to prove the error estimate (1.17) for rings. Before
proceeding to the proof of (1.17), we remark that this inequality holds for general Lipschitz
domains 2. Indeed, using the known embedding of BV(Q2) into Ly(2): we have

(4.1) If —allL, ) < ClIf = allsva),

for any function f and constant a. Therefore, taking the infimum over a, we obtain
(4.2) 1f = aa(F)ll.0) < Cifel{%”f —allpv(e) < Cilflsvie) = C1 Val(f).

The last inequality in (4.2) follows for example from elementary results in approximation
(see e.g. Theorem 3.5 in [DS]). It is to see that the constant Cy is invariant by isotropic
scaling of 2, but grows by anisotropic (e.g. one directional) scaling. This reveals that C;
strongly depends on the shape of 2. Our goal is to directly prove (1.17) with a constant
Cy that is uniform for rings Q = I \ Io.

Let S € Sk(Q) be a piecewise constant function on  with k such that 272 is less than
11| and 27%F is less than |Iy| in the case where Iy is not empty. Given a path p, let

(4.3) J(p):=_ |l

where the sum is taken over all edges L € L£4(£2°) which are crossed by p. Here and later,
we use the notation K° to denote the interior of a set K C R



13

For each i, we define

(4.4) =Y J(pi),

where the sum is taken over all the paths p; associated to the row index ¢ (recall there are
one or six such paths) and

(4.5) R = Zri.

Similarly, we define
(4.6) cj=Y J(3),
i

where the sum is taken over all the paths v; associated to the column index j and

mi

(4.7) C = ZC]‘.

j=1
Lemma 4.1. For any ring Q and any S € S({2), we have

(4.8) 2R+ C) < 9Va(f).

Proof. We shall first estimate how often |Jr|, with L a fixed vertical edge, L € L(2°),
appears in the sum R + C. Suppose first that L is in an unobstructed row . Then L
appears exactly once for paths p;. The row 7 is used at most four times for paths p;, with
¢ # t'. The row ¢ is also used at most four times for paths +;. Hence J; appears at most
9 times in the sum R4 C'. Consider next the case when ¢ is obstructed. Then, J; appears
exactly once for paths p; and it never appears for any other paths p; or ;. The same
estimate holds for J;, when L is a horizontal edge. Thus,

(4.9) MR+ C)<9 ) 27F| = 9Valf),
LeLy(Q0)

where the last equality is given by (2.12). O
Remark 4.1 In the case €2 is a cube, the constant 9 in (4.8) can be replaced by 1.
Theorem 4.1. For any ring = I \ Iy and any function f € BV(Q2), we have

(4.10) If = ag(Hllza(e) < 6V3Valf)
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Proof. Let us first observe that it is sufficient to prove this estimates for the special case
of functions S € Si(€2). Indeed, if this has been shown, then we have

(4.11) If = aa(Fllzo@) < NF = Pe(HllLace) + 11P:(F) = aa(Hll L0,
where Py is the projector onto Si(2). The first term tends to zero with & and the second
would provide our estimate since aq(Pr(f)) = aq(f) and since by (2.11) Va(Pr(f)) <
Va(f) if k is sufficiently large.

Henceforth, we consider f € S, with k such that 272% is less than |I;| and 272% is less
than |Iy| in the case where Ij is not empty. Let p; = p; ; denote the value of f on the

cube I with I in row ¢ and column j. (with similar notation for I') and let A denote the
set of (7,7) such that the cube with index (¢,7) is contained in § and let N := |A|. Then,

A:=aq(f) = % E(i',]")e/\ pir,jr. Therefore,

(4.12) pij—AISNTY > pij—pir il
(7,5 EA

We can construct an admissible path p which connects the center of I to the center of
I' using portions of the paths p; and ;.. Indeed, it is easy to see from our constructions
there is a path p; associated to row ¢ which passes through I and a path 7; associated
to column j which passes through j such that p; intersects v;. We take p as the shortest
path contained in p; U~; which connects the center of I to the center of J. It follows that
|pi.j — pir,j7| does not exceed the sum of the Jy, crossed by this path. Hence,

(4.13) pij = pirgr | < ri ¢
By a symmetric argument, we obtain that
(4.14) |pij = pir gl < rie + ¢
By (4.13) we obtain
C
(4.15) Py AISNTY YT (i) Srid
(i, ) eA

and by (4.14)

R
(4.16) pij— Al < e+ T
Hence

e miR mi mi m?2
|pi’]‘ — A|2 < (Ti + N )(C]‘ + N ) =ric; + WTZR—I— FC]‘C + N—;RC

We note that N272F = |Q| > 2|I,| = 3m$27%%. In other words, m{ < 2N. Therefore,
sumiming over ¢, j we obtain
2

2 2
2 _ -2k o 2 —2k My 5o My 9 MY
15— All7, @) =2 (E‘)€A|PZ,J—A| <2 (RC—I——NR —I-—NC -I-—N RC)
i,J

4 4
< 52_2k(R+ C) < 592 Va(f)?,

where we have used Lemma 4.1. This proves (4.10). O
Remark 4.2 In the case ) is a cube, the constant 6v/3 in (4.10) can be replaced by 1.
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5. Projections onto piecewise constant functions.

In this section, we shall prove the BV stability of projections onto a space of piecewise
constant functions related to a partition of () into rings.

We denote by P a partition of () into a finite number of rings. This means that the
elements of P are rings K which are pairwise disjoint and union to (). For each such
partition P, we define

(5.1) Pp(f) ==Y ar(f)ex,

KePp

where we recall that ax(f) is the average of f over K and ¢ is the characteristic function

of K.
Theorem 5.1. For any finite partition P of ) into rings and any f € BV(Q), we have

(5.2) Vo(Pp(f)) < 10Vo(f).

Proof. Let k be large enough so that for any K € P, K = I, \ Iy, we have |I;| > 272 and
|Io| > 272% if I is not empty. Then Pp(f) = Pp(Pi(f)). Thus, in view of (2.11), it is
enough to show that (5.2) holds for any f € Sk. We consider only such f in the remainder
of this proof.

If L € Li(Q), we denote by Jr, := Jr(f) the jump in f across L and by J(Pp(f)) the
jump in Pp(f) across L. For any set R C ), we define

(5.3) S(AR) =) |l

LeLy(R)

Fix one set K from P and let fy be obtained from f by redefining f to be ax(f) on K.
Note that the jumpsin fy are the same as those of f except for those inside K (which will
be 0 in fy) and those on 0K, the boundary of K. We shall prove that

(5.4) S(fo.Q) < S(£,Q) + 9S(f. K \ OK).

Assume for the moment, we have proven (5.4). Then, repeating successively for each
K € P the process that constructs fo from f, we arrive at

(5.5) S(Pr(£).Q) <S(£,Q)+9 > S(f.K\0K) < (1+9)S(f.Q).

Kep

Since Vo(f) = 27%2(£,Q), (5.5) implies (5.2).

We finish the proof by proving (5.4). We shall use the paths that were constructed in
§4. We fix aring K € P and we index the cubes I € Dy (K )UB,(K) as in §4. Let pr = p; ;
denote the value of f on I when I has index (¢,7). Let J; := Jr(fo) be the jump in fy
across L € L(Q°). We need to estimate J; for those L contained in the boundary of K.
To each such L, there is an I = I(L) € By(K) which contains L as one of its sides.
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We let (7, j) denote the index of I. Then, we have

1
(5.6) T3] < N Z pi; — pir gl
(2',5") €A

where as before A denotes the set of (7, j) such that the cube with index (¢,7) is contained
in I, and N = |A|. Let I' have index (¢',j'). As in the proof of Theorem 4.1, using a
subpath of one of the p; and a subpath of one of the v; (in the case 1 <7 < my) or from
pir and v; (in the case 1 < j < my), we can construct an admissible path p(z, 5,2, ") for
K which connects the center of I to the center of I'. Let I'(7, ,¢', ;') denote the collection
of all of the M € L;(Q) which intersect this path. Then,

, 1
(5.7) s > > ul

(/5" ) eA MeT (i,5,¢,5")

Thus,

1
(53) S s Y nuldul

LEIK MEL(Q?)

where n s is the total number of times M appears in all of the sets I'(z, 5,¢', "), with (7, 7)
the index of a cube in Bi(K') and (¢', ') the index of a cube in Dy (). We shall complete
the proof by showing that

(i) nar = 0, if M is not contained in Li(K)U Li(0K ),

(i) nar = N, if M € Lx(0K),

(iii) nas < ON, if M € Ly(K°).

Clearly, these three estimates used in (5.8) prove (5.4).

Now, statement (i) is obvious because all the paths p(i, 7,4, ;") are admissible for K.
Statement (ii) is also obvious because Jyr, M € Li(0K) is crossed only by the paths that
emanate from I(M) and there are exactly N of these (one for each cube I' in Dy (K)).
To prove (iii), consider for example a vertical segment M € Li(K \ OK). If M is in an
obstructed row, then for each (¢',5'), M will appear in exactly one I'(¢,7,¢',7'); namely
for one pair (7,j) with ¢ the index of the row which contains M. So for these M, we
have njy; = N. On the other hand, if M is in an unobstructed row ¢*, then for each
(7',7"), M will appear in only one of the I'(¢*, j,¢', ;') for the two values of j corresponding
to boundary cubes. At the same time, M can appear at most four times in the sets
T(e,7,2,7"), 1 <@ < my, ¢ # ¢*; namely for the one possible obstructed row with index ¢
which is congruent to * mod mg. Similarly, for each (¢',j'), M can appear at most four
times in the sets I'(¢,7,¢',7'), 1 < j < my. Thus nyr < 9N in this case. We have proved
(i-iii) and completed the proof of the theorem. O

6. A partition algorithm and a direct estimate for .

In this section, we shall prove the direct estimate (1.7) for ¥%;. Our proof is based on
two ingredients:
(i) The projection error inequality (1.17) for ring-shaped domains that was established in
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4.
(ii) A general result on the partitioning of @) into rings with respect to a super-additive
function.

The proof of this second result will actually provide a concrete algorithmic procedure
that builds adaptive partitions of @) into rings for the approximation of a given function

f.
If f € Ly(Q), we define

(6.1) TAS) = inf

\f =9l

which is the error of approximation by the elements of X7 .

In the following, we let & denote a positive set function defined on the algebra A(Q)
generated by the rings K C @. That is, A(Q) consists of all subsets of ) which can be
formed by finite unions and intersections of rings K C () and their complements. We make
the following assumptions on ®:

(i) ® is super-additive: if I{; and K, are disjoint sets in A(Q), we have

(6.2a) B(K,) + B(K,) < B(K, U LK),

(ii) ® applied to cubes of decreasing size goes uniformly to zero, i.e.

(6.2b) lim sup &®(K)=0.
F=o KeDu(Q)

Note that an immediate consequence of (6.2a) is that ®(K;) < ®(K;) when Ky C Ks.
We shall prove a general partitioning result with respect to such functions. In practice,
we shall be interested in applying this result in the case where

(6.3) (K) = @p(K) = |If — ax (L,
for f € Ly(Q), and also in the case where

(6.4) O(K)=Vi(f)=|flsvr),

for f € BV(Q). It is easy to see that properties (i) and (ii) are satisfied in both of these
cases (see [Z] for a proof of (ii) for the second example using a slight modification of the
BV norm).

We next make some preliminary remarks which will be useful for stating and proving
our main result (Theorem 6.1) of this section. Recall that each dyadic cube I has four
children J; these are the dyadic cubes J C I with |J| = |I|/4 and one parent. Given a
function ® as above and a parameter € > 0, we define 7, to be the set of cubes I € D(Q)
such that ®(I) > e. The collection of cubes in 7, form a tree which means that whenever
I € 7. and I # @), then its parent also belongs to 7,. We also remark that 7. has finite
cardinality, due to (6.2b).
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In what follows, we shall assume that ®(Q)) # 0 and that e is small enough so that 7,
is not empty. In the tree 7., we shall make the distinction between several types of cubes:
(i) The set of final cubes F, consists of the elements I € 7, with no child in 7.

(i1) The set N; of branching cubes consists of the elements I € 7, with more than one child
in 7..

(iii) The set C, of chaining cubes consists of the elements I € 7. with exactly one child in
7T..

. From the fact that a branching cube always contains at least two final cubes, one easily
derives

(6.5) V] < JF -1

The set C. can be partitioned into mazimal chains Cy. That is, C. = Uy_,Cy, where
each C, is a sequence of m = m(¢) embedded cubes:

(66) Cq = (I07"' 7Im—1)7

where Ir4q is a child of Iy, and where Iy (resp. I,—1) is not a child (resp. parent) of a
chaining cube.

The last cube I,,,_; of a chain Cy, always contains exactly one cube I,,, from 7. and this
cube is either a final cube or branching cube. The cube I, is uniquely associated to this
chain. This shows that the number of chains n = n(e) satisfies

(6.7) n< N+ |F]—1<2|1F| -1,

Our next theorem gives our main result of this section. It algorithmically constructs
a partition P, of @) into rings K with ®(K) < e. It also describes a second partition P,
whose sole purpose is to help count the number of rings in P..

Theorem 6.1. Let € > 0 be such that T, # (). Then, there exist a partition P, of Q) into
disjoint rings such that

(6.8) ®(K)<e if K€P.,

and a set P, = P! U P? of pairwise disjoint sets Ik which are cubes (in the case K € 7551)
or rings (in the case K € P?) such that

(6.9) B(K)>e if KeP,,
and
(6.10) P < 8|P!| +3|PZ| < 8|P|.

Proof. We define P, = P! UP? UP3 with

€

(i) PL: all children J of the final cubes I € F..
(ii) P?: the children J of the branching cubes I € A, such that J ¢ T..
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(iii) P3: rings and cubes obtained from the chains of 7. by an algorithm that we now
describe.

If C, = (Io,...,In—1) is a maximal chain (1 < ¢ < n), and I,,, is as above, then we
associate a chain ring K, = Iy \ I, to each chain C;. Note that

(6.11) P UPPU{K, : ¢=1,...,n}

is a partition of the cube ). We next partition each chain ring I, ¢ = 1,...,n, according
to

(6.12) Ky = (Lig \ ;) ) U (L, \ Ij, ) U--- U (L, \ Iy),

where 0 = jo < j1 < -+ < jp, = m (p = p(q)) are uniquely defined by the following

recursion algorithm: assuming that ji is defined, and that j; < m, we choose jr4+1 as

follows:

(1) if ®(L;, \ In) <€, then jr4q1 :=m, i.e. p:=k + 1 and the algorithm terminates.

(11) if (I)(I]k \I]‘k_|_1) > €, then jk—l—l = ]k + 1.

(iii) if neither (i) or (ii) apply, then jry1 is chosen such that ®(I; \ I;,,,) < € and

®(L;, \ Ij,,,+1) > €. In other words, jrq1 is the largest j > ji such that (I, \ I;) <e.
We can now define the set P?. For each chain ring K, ¢ = 1,...,n, we include in P?:

(i) all vings I;, \ I,,, such that ®(I;, \ I;,,,) < e, (ii) the children of I, (J} JZ J?)

that differ from I, , for all k such that ®(I;, \ I;,,,) > € (in this case jri1 = jr + 1, i.e.

I, is a child of I}, ). Note that the cubes (J} ,J? ,.J? ) are not in 7,.

E41 Je? T Ik 7 Ik
Because of (6.11), P, is a partition which clearly satisfies (6.8).

Next, we define P, := P! U P2, where

€
(1) Pl is the set of all of the final cubes of 7.
(ii) 7552 is a set of rings constructed by an algorithm that we now describe.
For each chain ring K,, ¢ = 1,...,n, we recall its decomposition according to K, =
(Lig \I;;)U---U(I;,_, \ I;,), and we construct a new decomposition

(6.13) Ky = Lo \ L)) U (L \ Lo, ) U - U (Lo, \ L),

where 0 = 59 < 51 < -+ < s, = m (r = r(q)) constitute a subset of (jo,...,Jp) uniquely
defined by the following recursion algorithm: assuming sy = j7; < m 1is defined,
(i) if ji41 = m, we take sp41 :=m and r := k + 1 and terminate the algorithm.
(i) if Ji41 < m, and if ®(I;, \ I; <€, we take sg41 = Ji42. In the case that ji1o = m,
we terminate the algorithm.
(iii) if yip1 < m, and if ®(L; \ I, ,)
For each chain ring K,, ¢ = 1,...,n, we then include in 7552 the rings I, \ Ls,,,,
k=0,---,r—2, for which we have ®(I,, \ I,,,,) > € (by the construction of P?) and we
also include the last ring I, _, \ I, only if it satisfies ®(I,,_, \ I, ) > e. This means that
we do not include any ring from the chain ring I, if ®(K,) <e.
We now claim that

1+1)

> €, we take sgy1 = Ji41

(6.14) (P3| < 3|P2| +n < 3|P? 4+ 2|F.| — 1 =3P +2|P} -1,
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Indeed, each ring I, \ I

of P? contains (as subsets) at most three rings of P, and in

each chain C,, ¢ =1, ... ,;j:lat most one ring of P2 is not contained in some element of 7552
Finally, we prove the estimate (6.10). First, we clearly have

(6.15) P! < 4[P!]

and

(6.16) P2 < 2V < 2(1F = 1) = 2(|P!| - 1).

Using these last two estimates with (6.14), we obtain
(6.17) [Pe| < 3|2 + 8P| =3 < 8P|+ 3|P| < 8|Pe.
This proves (6.10) and completes the proof of the theorem. O

We shall now use Theorem 4.1 to prove a direct estimate for approximation by the
elements of X7. To do so, we fix f € Ly(Q) which is not constant and we take for & the
Ls-error function defined by (6.3). For each € > 0, the algorithm described in the proof of
Theorem 6.1 gives a partition P, = P.(f) adapted to f. We then consider the piecewise
constant approximation

(6.18) A.f:=Pp.f,
where Pp,_ is defined by (5.1).

Theorem 6.2. If f € BV(Q) is not constant and if e > 0, then the algorithm of Theorem
6.1, with ® given by (6.3), produces a partition P, that satisfies

(6.19) 1P| < %VQ(f), M :=18V/3,

and an approximation A, fthat satisfies

(6.20) If = AcfllZ,q) < MVeVa(f).
Consequently, one has the Jackson estimate
(6.21) o (F) £ MNV2Vg(f)

Proof. We consider the set P, with the properties indicated in the statement of Theorem
6.1. Using the error estimate (4.10) with constant 6v/3 for rings and 1 for cubes (see
Remark 4.2) together with (6.10) we obtain

Ve Pe| < Ve8|PL + 3|P?]
<8 ) [RE)V 43 ) [R(K)

KePp} Kep?
<8 Z Vi(f) +18V3 Z Vi(f)
Kepl Kep2

<18V3 ) Vi(f) < 18VBV(f).

KePp,
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Dividing by /€, we obtain (6.19).

The approximation error (6.20), is then obtained from

If = AcflliLig = D B(K) < [Pe,

KeP.

and (6.19). If we take /e := %(f), then (6.19) and (6.20) imply (6.21). O

We can also obtain (6.21) by using the function ®(K) = Vi (f). We now denote by
P.(f) the resulting partition and AY f := Pp_(p) f the resulting partition when the tolerance
is chosen as e.

Theorem 6.3. If f € BV(Q), Vo(f) # 0, N > 0 and € := 8N~ Vq(f), then the
algorithm of Theorem 6.1, with ® given by (6.4), produces a partition P, that satisfies

(6.22) [Pe| < N
and an approximation A} f that satisfies

(6.23) 1 = A% Fllzoq) < 48VBNT2VG(f).

Proof. The proof is similar to the previous theorem. We consider the sets P, and P, of
Theorem 6.1. Using (6.9) and (6.10), we have

elP] <8e|Pe| <8 Y ®(K)=8 ) Vi(f) <8Veo(f)
I\EP I\EP

which gives (6.22).
We use the error estimate (4.10) and (6.22) to obtain

Hf—A:fHZM(Q) Z If —ax(f HL2(A) = 6\/_ Z Vir(f

KePp, KePp,

< (6V3)*|Pc|e* < (48V3)P N~ Vo(f)*,

which proves (6.23) O

We close this section with the following simple remark about existence of best approxi-
mants from X7 .

Lemma 6.1. For each f € Ly(Q)) and N > 0 there exists g € £}, such that
1 = 9llz.cQ) = o (£)-
Proof. By the definition of o} (f) (see (6.1)), there exist ¢1,¢2,... such that g; € £}, and

If = gillLaco) < on(f)+57"



22 ALBERT COHEN, RONALD DEVORE, PENCHO PETRUSHEV AND HONG XU

Let P; (|P;| = N) be the partition for ¢; and furthermore let K}, = IJ \ JJ € P;, m =
1,2,..., N, be the rings of P; with the indices selected such that K| > K| > > |K}7‘\, :

By selecting a subsequence from (g;), we can find an > 0 and an Ny < N such that
K/ >n,1<m<Ny,j=1,2,...,and |[KJ | — 0, j — oo, Ng < m < N. It follows that
for each m, either the |IJ | > n for all j or |I7 | — 0, j — oco. A similar statement applies
to the JJ . Since there are only a finite number of dyadic cubes with measure > 5, by
again extracting a subsequence, we can assume that for each m, either I, does not change
with j or |I7,| — 0. A similar statement applies to the JJ,.

It follows that there exist disjoint rings K, m =1,..., N, such that |K;j \ K|+ K\
K;j| — 0,5 — oo and K} =0, No <m < N. It is now easy to see that ||g — ¢, ,(0) — 0,
j — o0, for

No

g = Z arx QK-

m=1
Therefore, ¢ satisfies the conclusions of the theorem. 0O

7. Minimization of the K-functional by piecewise constant approximation.

In this section, we shall use the Jackson and Bernstein estimates that we have proved
for £7, to show that a near minimizer for the problem (1.2), i.e. the K -functional, can be
taken from some space X%;. We shall also show how the algorithm of the previous section
can be used to find a near minimizer.

We begin with the following simple result.

Theorem 7.1. Foreach f € Ly(Q) and N > 0, and for each 6 > 0, there exists a function
h € ¥% such that

(7.1) If = Bllzacq) + N7V2Vo(h) < (1+ 6)18VBE(f,N7'/2).

Proof. If K(f,N7'/2) = 0 then f is constant and (7.1) follows by taking h = f. If
K(f,N7Y2)£0and ¢ > 0, let ¢ € BV(Q) satisfy

(7.2) 15 = gllzaiey + N72V0(g) < (14 6K (£.N7V2).

Then, according to (6.21) of Theorem 6.2, for each N, there exists a function gy € X
such that

(7.3) lg = gnllz, < 18V3NTV2Vq(g).
We take h := gn so that

Nf = 2lleoc) S N = 9llzac@) + 119 = Pllz.(Q)
(7.4) <N = gllLacg) + 18VBN T2 Vg(g)
<18VB(1+ 6K (f, N~1/?),
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We can estimate the variation of A by Theorem 5.1. Since h = Ppg with P the partition
for h, this gives

(7.5) Vo(h) < 10Vg(g) < 101+ §)NY2K(f, N71/%),

Then, (7.4) together with (7.5) proves the theorem. O

We say that an element ¢ € X%, is a near best approximation to f € Lp(Q) (with
parameters ¢ > 1, and N < M) if

(7.6) 1f = 9llr.@) < aon(f).

We next show that any such near best approximation is a near minimizer for (1.2).

Corollary 7.1. If f € L2(Q) and g € X% is a near best approximation with parameter
a, then g satisfies

(7.7) 1 = gllocg) + N7H2Vo(g) < Coakl(f, N71/?),

with Co < 2016 + 18/3.
Proof. Let h € X' be the function of Theorem 7.1. Then,

(7.8) 1f = 9ll.0) < aoy(f) < allf —Rlln,0)-

Also, since ¢ — h € X7, from the Bernstein estimate (3.9), we conclude that

N=Y2o(g) < N7V2Vq(h) + N~V (g — h) < N7V2Vg(h) + \ng hllL.@

) 56
< NT2V(h) + U =gl +1F = bllra@)

56
<N Y2V + (1 +a)||[f =P .
> Q( ) \/g( )Hf HL2(Q)

Combining this with (7.8) gives that the left side of (7.7) does not exceed

58 Lt a))(f = hllzacgy + N2V (1),

56 _
(a+ =1+ a)||f =Bl 1@ + N7 Vo(h) < (a+

V3
We now use (7.2) to arrive at (7.7). O

While Theorem 7.1 and Corollary 7.1 both provide near minimizers of (1.2) they are not
of practical interest since they are not constructive. Yet, they show that a near minimizer
for (1.2) can be taken from X}, when N is chosen so that N~/2 has the same order of
magnitude as t.

We shall use the remainder of this section to prove that a near minimizer can also be
obtained by applying the algorithm of the previous section to the function f. Recall that
this algorithm is controlled by the parameter e > 0: by decreasing e, we increase the number
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of rings in the partition P, and we decrease the approximation error ||f — A.f||z,(q). We
thus have A f € ¥ with N = N(e) increasing as e goes to zero. In practice, we would
like to directly control the number of rings. This leads to the following question: given
N > 0, can we find e(N) such that |P.| = N, or equivalently does the function N(¢) reach
all possible values of N € N 7 Strictly speaking, the answer to this question is negative.
However, we can circumvent this difficulty as we shall now describe.

For a given f, and a given N € N, we define

(7.9) e(N):=min{e >0; |PJ| < N},
(7.10) Prx =Py,

and

(7.11) Anf = A f = Ppsy f.

If (N) > 0, the minimum is attained in (7.9). Indeed, the construction of 7., P, and
A.f described in the previous section ensures that, for any given € > 0, there exists € > 0
small enough so that 7.y = 7¢, Peys = Pe and Ay sf = A f, for all 0 < s < €.

If e(N) =0, then from Lemma 6.1, f € £},. We can therefore apply the algorithm with
e = 0 since the tree 7y will be finite. With this choice, the algorithm gives Ay f = f and
therefore Ay f = f as well.

In order to prove that Ay f is a near minimizer for the K-functional, we first need two
lemmas that will be used to compare the partition Py produced by the algorithm and the
partition that is associated to the element g € ¥ 5 which is a known minimizer.

Lemma 7.1. If P is a finite set of pairwise disjoint rings and P' a partition of () into a
finite number of rings, then for each K' € P', there are at most two sets K € P such that
KN K'#0 but K is not contained in K'.

Proof. Let K' =1'\ J where J' C I' and J' may possibly be empty. If K =1\ Jisin P
and K N K' # 0, then I NI' £ (. Hence either I C I' or I' C I. We shall show there is at

most one K of each of these types that intersects K’ but is not contained in K.

(i) Case 1: I' C I. Suppose that there were two sets Ky = I \ J; and Ky = I \ J;
from P with I' C I1,I,. Then, obviously I; N I # ) and hence without loss of generality
I' C I C I,. For K and K3 to be disjoint (as they must be since both are in P) we must
have I; C Jy. But this means K3 does not intersect K', which is a contradiction. Thus,
we have shown there is only one set K of this type.

(ii) Case 2: I C I'. Suppose again that there were two sets Iy = I; \ J; and Ky = I\ J,
from P with I' D Iy, I5. Then, I;N.J', 1 = 1,2, since otherwise K; C K'. Hence, J' C Iy, I.
Obviously, I1 NIy # () and hence without loss of generality Iy C I, C I'. Since K1 NKy = (),
we have

JichclhchLcl

Since J' C I; C J,, this is a contradiction since it implies that K, C K'. O
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Lemma 7.2. If P is a finite set of pairwise disjoint rings and P' a partition of () into a

finite number of rings, and if |P'| < N and |P| > 2N, then the subset P! of all K € P
contained in some K' € P’ satisfies |[P'| > N.

Proof. Let denote by P? the set of all K € P that are not contained in any K’ € P’, and
by P3 the set of K' € P’ such that there exist K € P, having a non-empty intersection
with K.

By the previous lemma, each K' € P3? is associated with at most two K € P? such that
K and K' are not disjoint. On the other hand, each K € P? is associated to at least two
K' € P3 such that K and K’ are not disjoint. We thus have necessarily

[P <[PPI < P <N,

so that [P!|=|P|—[P?|>2N -N=N. O
We are now ready to prove the main result of this section.

Theorem 7.2. Let f € L(Q) and N > 1 be an integer and M := 16N. The function
Anmf = Acan)f is a near best approximation to f in the sense of (7.6) and satisfies

(7.12) If = Anfllra@) + N7V2 V(A f) < CRE(f,N71?),

with C| = 8Cy and Cy the constant of Corollary 7.1.

Proof. We consider first the case that € := ¢(Af) > 0. Let ¢ be a best approximation to
f from ¥% and P be the partition associated to ¢g. Fix an arbitrary 0 < n < € and let

P = 75,, be the partition of Theorem 6.1. Then, using the fact that n < e together with
Theorem 6.1, we find M < |P,(f)| < 8|P|. Hence |P| > 2N and we can apply Lemma 7.2

to find a set P! C P with |P'| > N and each element K € P! is contained in some ring
of P. It follows that

Ny < Y F = ax(Dl, a0 S I = 9lliug = oh ()

Kep?

Since 1 < € is arbitrary, we have

Ne < oi(f)*.
Therefore,

If = Anflli ) = D ®(K) < Me < 16a%(f)".
KeP.

Thus A f is a near best approximation to f with parameter a = 4 and (7.12) follows
from Corollary 7.1.

In the second case, where e(M) = 0, we have Ayf=A0f=fand f € Y5y The left
side of (7.12) does not exceed N™'/2Vo(f). Let h be the function of Theorem 7.1. Since
f—hex Y5, v, we have from the Bernstein inequality (3.9)

V3
—h +NY2V5(h) >
Hf HL2(Q) Q( )— 28\/3_4

§(N+M) =

N7V (f=h)+N"YV2V(Rh) > V3 N~1/2

VT Vo(£).
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Hence, the left side of (7.12) does not exceed

28/34
V3

and the proof is completed by invoking inequality (7.1). O

(If = Bllzace) + N2V (h))

8. Direct estimates for Haar thresholding.

In this section, we fix a function f in BV and show that its Haar coefficients are in
weak (1. That is, we shall show that when the Haar coefficients are put in decreasing
order according to the absolute value of their size, then the n-th rearranged coefficient is
in absolute value less than C|f|gv/n, with the C' an absolute constant. We shall see that
this also yields the Jackson estimate (1.7) for T%.

In the next section, we shall then use this result to show that the extremal problems
(1.1) and (1.2) have near minimizers which can be obtained by wavelet thresholding of the
coefficients with respect to the Haar basis.

Associated to each dyadic cube I = [277ky,277(ky + 1)) x [277kq,277 (ko + 1)), there
are three Haar coefficients ¢§ , = (f, Hj ), e € V, k = (k1, k2) with V the nonzero vertices
of the square @ = [0,1]? (see (1.10-11). In this section as well as in §9, we shall denote
any of these by ¢; = ¢;(f) and the corresponding Haar function by Hr: when we state a
property about ¢y, we mean any of these three coefficients and similarly for H;.

We shall assume without loss of generality that f has mean value zero so that the
coefficient of ¢ is zero. We shall denote by ~,(f) the the n-th largest of the absolute
values of the Haar coefficients ¢ of Hf, I € D(Q), e € V.

We begin with the following well-known lemma.

Lemma 8.1. If f € BV(Q) and € > 0, then there exists a continuous function f. which
is piecewise continuously differentiable on () such that

(8.1) If = FellLaco) <
and
(8.2) Volfe) < Vo(f).

Proof. This can be proved in many ways by mollification; for example using Steklov aver-
ages. We shall prove this by using piecewise bilinear interpolants. We recall (see (2.11))that

(8.3) Vo(Prf) < Velf),

where Py is the projector onto Sg. Since || f — P f||1,(g) goes to zero as k tends to infinity,
it is sufficient to prove the result assuming that f is in Sy.
For such an f, and 0 < € < 27F71 we define a tensor product grid

(8.4) [.:=T!oTI!



27

where the univariate grid T'! is defined by
(8.5) Il ={0,1}u{2Fn4+e;n=0,....2"—1}u{2"n—e; n=1,...,2F}.

The f is well defined at each point in I'c. Let f. be the the function which is piecewise
bilinear relative to I', and interpolates f at each grid point in I'.. That is f, is the unique
continuous function, which is piecewise bilinear (i.e. of the form a+ bz + cy+ dxy) on each
rectangular patch defined by I', and equal to f on T',.

One easily checks that by construction,

(8.6) Volfe) < Volf)

On the other hand, it is clear that f. tends to f in L2(Q) as € goes to zero. 0O

In view of Lemma 8.1, in going further, we can assume without loss of generality that
f is continuous and piecewise continuously differentiable on (). Then,

(87) Vif) = [ Ufaal + £l

for any ring K. Therefore, V(K) := Vg(f) is set additive on rings, i.e. V(K3 U K3) =
V(K1) + V(K3) for any two disjoint rings K; and Ks.

Theorem 8.1. For each f € BV(Q) and each n > 1, we have

Vo(f)

n

(8.8) Tlf) <Cy

with Cy = 36C! and C} := 216v/5 + 72/3.

Proof. We can assume that f is continuous and piecewise continuously differentiable on
(). We can also assume that Vg(f) = 1 since the general case then follows by scaling. We
shall show that there is a set A,, C D such that

(1) |[Ap] <6-2", n=1,2,...,

(i) [er] < C27, T ¢ A,
where in (ii), ¢y is any of the three Haar coefficients associated to I. It is easy to see that
this implies (8.8).

We shall use constructions of trees similar to that in §6. We shall also use the abbreviated
notation V() := Vg(f) for any set S in the algebra of rings. For each m = 1,2,..., let
T denote the collection of all cubes I € D for which V(I) > 27™. The cubes in 7, form
a tree. Note also that the tree 7, is contained in the tree 7,11 and we can obtain 7,41
from 7, by growing 7,,.

We shall give each cube I € D an index m(I) as follows. We consider the four children
of J; CI,i=1,2,34. We can write V(J;) = 27" T¢% where m; is a nonnegative integer
(or m; = o0) and 0 < ¢; < 1. We define m(I) as the second smallest of the four numbers
m;. Another way to describe m(I) (when it is finite) is that it is the smallest integer m
such that I has at least two of its children in 7,,. Note also that if I has index m then
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I €7,_1 and I has at least two children in 7,,,. We have remarked in §6 that for any tree
the number of branching cubes (i.e. cubes with at least two children in the tree) does not

exceed the number of final cubes. Since the final leaves of 7, are disjoint and on each final

cube I, V(I) > 27™ it follows that there are at most 2™ cubes I in D with index m.
We shall also define a distance between two dyadic cubes J C I. This distance is the
difference of the dyadic levels of J and I, i.e.

1
d(I7 J) = 5(10g2 |1 —log, |J|)

We fix n > 0 and define for all 0 < m < n the set A, consisting of the cubes I in 7,
which contain a cube J with index m = m(.J) which satisfies d(I,.J) < 2(n —m). We thus
have

(8.9) |An| <[2(n —m)+1]2™, m=0,1,...,n.

Defining A, := U, _yA,,, it follows that

(8.10) A, < zn:[Q(n—m)—l—l]Qm <6-2"—1.

m=0

so that (i) is satisfied.

To prove (ii), let I € D be a cube not in A,,. We consider two cases. The first case is
when I ¢ 7,,. In this case V(I) < 27". Let (as before) ar := as(f) be the average of f on
I. By Remark 4.2, we have for any of the three coefficients ¢y,

(8.11) ler| < I/I(f(l‘) —ar)Hr(x)dz| < ||f —ar|p,y < V(I) <27"

Hence, we have verified (ii) in this case.

Consider now the remaining case when I € 7,,. We define a chain of cubes I = I D
I O --- D I, as follows: given that I; has been defined, we define ;4 as the child of I; in
T, on which f has largest variation. The chain terminates when I, is a final leave in 7,.

Let K; :=1I;\Ij11,5 =0,...,r —1, and K, := I,. The three children J different from
Ii4q all satisfy V(J) < 27U+ Tt follows from the additivity of V that

(8.12) V(K;))<6-27mUD =0, r—1

We can now estimate any of the three Haar coefficients ¢; as follows. We define

T

(813) g = Zaf(j 99[(]4,

Jj=0
where

1

(814:) OK; ‘*— -
|IX]| I(]‘

fla)de.
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We let H; denote the Haar functions associated to I and ¢y. Then,

ler| =

1 fx)H(x)dx

< [Lo|/? ; |[f(2) = g(x)]dz +

| sttt ds
Io
=11+ 12
We can estimate 177 by using Theorem 4.1 and the Cauchy-Schwarz inequality. This gives
m < |7 N =gl < Hol ™) I = gl G
j=0 J=0

< 6V3|L| 7Y VIE)IEY? <6V8Y 27 V(K).
j=0 J=0
We now show a similar estimate for 7. Since ¢ is a constant on each ring K; we get

e < |Io|7/? lg(2) — ak,| de = |Io| ™/ E lg(z) — ar,| dx
I B I\'
1 ]—1 J

r r J
= L] 7Y Jar; — arc ||| < (L7 Y |KG1Y  law, — ax, ..

We now change the order of summation to find

r r

T
n2 < |Lo| ™/ Z lar, —ax, .| Z K| < |Io|~*/* Z lar, = ar,_y [[Lal-

pn=1 J=n n=1
For each p, the set K := K, U K, is a ring and if a is the average of f over I, then

|GKM - GR’M_1| < |GKM - a| + |aI(M_1 - a|

1

< — |f(2) —a|de + — |f(2) — a| dx
r K, (=) [ -1 Ky 1 (=)
1

< 0= |f(z) — a|dx
7l Ji )

<K K = all o) < 6VVEIK, |72 VK.

Since |Io| V2| K, |7'/?|1,| < %2_“ we obtain

\/_ Y

(8.15) 2 < 12\/526 (V(K,) +V(K,_1))27"
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This together with the estimate of 1; shows that
(8.16) ler] < (18V/5 + 6v/3) Zz IV (F Zsk,

where Sj consists of that portion of the sum on the right side of (8.16) corresponding to
the terms for which m(I;) = k. Then, as we have shown earlier, V(K ;) < 6-27* for each
such j. Also, I; is at a distance > 2(n — k) from I because of the definition of A and A,,.
Hence,

(. @)

(8.17) Sk <(108VE+36v3) > 27 = (108V5 + 36v/3)272" K,

v=2(n—k)+1

We now return to (8.16) to find that
(8.18) ler] < (108V/5 + 36V/3) Zz 2tk < (2165 + 72v/3)27

Thus, we have provided the desired estimate for these I as well. O

Theorem 8.1 immediately yields a direct estimate for Haar thresholding. For this, we
define two nonlinear operators associated to the Haar decomposition. Let f have mean

value zero on () and f =) c¢7H{. We define for € > 0
(8.19) Hf= ) ciHj,
|eg|>e
the thresholding of f at level €, and for each positive integer N

(8.20) Guf= ) ciH,

the best approximation of f from X%: the set En(f) contains the indices of the N largest
Haar coefficients ¢7 of f. In the case of ties in the size of the coefficients we make an
arbitrary assignment to the set En(f) in order to remove the ambiguity.

Theorem 8.2. If f € BV has mean value zero on (), we have

(8.21) If = HeFllnaiqy < Cale V(£
and
(8.22) inf |If = gllz.o) = If —Gnfliraco) < CsNTV2Vo(f).

geELY
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with Cy = 2+/C and C3 = Cy with Cy the constant of Theorem 8.1.

Proof. If € > V(f), then (8.11) and (8.12) follow trivially from the embedding theorem
(Theorem 4.1 and Remark 4.2). We can therefore assume V(f) > € in going further. For

each n, let v, := v,(f) denote the n-th largest Haar coefficient of f in absolute value and
for each k = 0,1,..., let A := {n: v, <2 %e}. We then have

Hf—HefH2L2(Q) = Z %% = Z Z %%

neA k>0 neAp\A
(8.23) €Ay >0 nEAR\Ar41
<€) 2 AR Appal.
k>0

For each n € Ay \ Agy1, we have v, > 27%"'e and hence from Theorem 8.1, |Aj \ Agsq] <
C1 Vo(f)2FT! Je. Using this in (8.23) we arrive at (8.21).
For (8.22), we have from Theorem 8.1,

1f=GnFli,= D m<CiVo(f)? Y, n 2 <CiVo(f’N~'. O
n>N+1 n>N+1

9. Minimization of the K and U-functionals by Haar thresholding.

We shall now show that Haar thresholding provides near minimizers for (1.1) and (1.2).
For this, we shall thus prove a stability result concerning the nonlinear operators that we
have introduced in the previous section.

Theorem 9.1. The operators Gy and H, satisfy for all e >0, N > 0 and f € BV(Q),

(9.1) Vo(dnf) < CiVelf),
and
(9.2) Vo(Hef) < CaValf),

with Cy = 10 + 28\/5(18\/5 + Cs) and Cj the constant of Theorem 8.3.

Proof. Clearly, it suffices to prove (9.1) since H.f = Gn f for some N = N(¢). Let g be a
best approximation to f from ¥%;. We can write ¢ = Pp f with P the partition associated
to g. Recall that each element of ¥% is in X5, and also Gy f is in X7 . Therefore, we

Vo(Gnf) <Vqlg) +Ve(Gnf —9g)

28
<10Ve(f) + E(GN)I/QHQNJC —9llz.()

have

<10Vo(f) +28V2N2( f — gll.co) + I1f = Gn FllLao)]
< [10+ 28V2(18V3 + C3)] Vo ),

where we have used Theorem 5.1 to estimate V(g¢) and the inverse estimate (3.9) for X%,
as well as the direct estimates (6.21) and (8.22) in the estimate of Vo(Gnf —¢). O
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Remark 9.1 The stability of the Haar thresholding is a quite surprising result since the
operation of discarding coefficients is in general not uniformly stable in BV (i.e. stable
independently of the set of coefficients which is discarded). Also in the proof of this result,
we have made use of our approximation results for ¥%;: a more direct proof of this stability
is still to be found. Note that we also have used decompositions into rings to prove that
the Haar coefficients of a BV function are in weak (!, leaving open the possibility of a
more direct proof.

Theorem 9.2. For each N > 1, and each f € L2(Q), we have
(9:3) If =GN Fllae) + N2 Va(Gn f) < CK(f,N7'/?),

with C5 = (112% + 1)Cs + Cy with Cs the constant of Theorem 8.3 and Cy the constant
of Theorem 9.1.

Proof. Let g be any function in BV(Q). Since Gy f is the best N term approximation to
f, we have

1f =GN Fllr.) S NI = Gndllz.
<|Nf=9llr.q + lg — Indll,c)
<N = gllLag) + CsN™2Valg),

where the last inequality uses Theorem 8.3. The function Gy f — Gng is in 3§ 5. We can
therefore use the Bernstein inequality (3.9) and Theorem 9.1 to obtain

N7V G(Gnf) < N7V V(G F = Gng) + ValGng))

56
< \/\[Hng OGNl L) + CaN T2V g(g)

1122
7 If = Gnallz.ig) + CsN ™2 Vo(g)

”2/1\f oliace) +<”2/

Combining these two estimates, we obtain

<

<

Cy + CNT2Vq(g).

(9.4) 1F = GnFlliace) + N7Y2Vo(Gn F) < Ol f = gllae) + N2 Valg)l.

Taking an infimum over all ¢ € BV(Q) gives (9.3). O

Our next result concerns the minimization of the U-functional, i.e. problem (1.1). As
in the case of the Besov space Bi(L1), a thresholding procedure, now in the Haar system,
yields the approximate minimizer.

Theorem 9.3. For each € > 0, and each f € Ly(Q), we have

(9.5) If = HefllLq) + e Vo(He(f)) < CsU(f, €,
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with Cg = Cy + 112C% + 4C + 2 and C the constant of Theorem 8.2, Cy the constant of
Theorem 8.3 and Cy the constant of Theorem 9.1.

Proof. Let ¢g be any function in BV(Q). We first remark that we have

(9.6) If = Hefllaiq) S I1f = MaegllLa -

Indeed, if the coeflicient ¢;(f—H.f) = (f—H.f, Hr) is non zero, then necessarily |c;(f)| < e
and ¢r(f — Hef) = cr(f). For this coefficient, we either have |cr(g)| < 2e, in which case

(9.7) ci(f—Hef) = ci(f) = cr(f — Haeg),

or |er(g)| > 2¢, in which case

(9.8) ler(f = Haeg)| = ler(f) —er(g)]l > € = [er(f = Hef))l.

In all cases the coefficients of f — Hz.g dominate those of f — H,f, so that (9.6) holds.
We thus have

1f = HefllT,0) < 20F = alli,0) + 29 — HaedllZ, o)

(9.10) ) )
<20 f = 9ll7,0) +4C5eValg).

where we have used (8.21) of Theorem 8.3.
We now estimate the variation of H, f as follows: using Theorem 9.1, we obtain

Vo(Hf) S Vo(Hef —Heg) + Vo(Heg)

(9.11) <Vo(Hef —Heg) + CiVolg).

We are left with estimating the variation of H.f — H.g. For this, we write
(9.12) Hef —Heg = H[Hef — Heg)l + H[Hef — Hegl,

where for a function h, Hch := h—Hh is the part of the Haar expansion of i corresponding
to the coefficients which satisfy |c;(h)| < e. Using the inverse estimate (3.4) of Remark
3.1 and then (9.10), we have

Vo(Hc[Hef —Hegl) <8 [Hef = Heglll, @) <167 [IHef = fllL, ) +I1f = HeallL, o)
<162 f = gll7,0) +4C5eVal9) +2f = 9llT,0) +2llg — Hegll7,0)]
<16 [4]f = gllL,q) +6[C2I e Volg)l.

where the last inequality again uses (8.21) of Theorem 8.3.

It remains to estimate the variation of 7:(E[Hef — H.g]. For this, we remark that if
0 < |er(Hef — Heg)| < e, then necessarily |er(g)| > e. In other words, if we denote by
Ny(€) the number of coefficients of ¢ above the threshold €, we see that H, [Hef — Heg] has
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at most N,(e) non-zero coeflicients. We can then use the inverse estimate (3.1) of Theorem
3.1 to obtain

(9.13) Vo(H[Hef = Heg]) < SINg(e)]' 2| He f = Hegll ()
. From Theorem 8.2, we have the estimate
(9.14) Ny(e) < Ciet Vol(g).

Combined with (9.13), this gives
GVQU:{E[HEJC — Heg]) < 8e[Cre™ VQ(Q)]I/ZHHEJC —HegllL.()
< 4€[C1Volg) + e [Hef — Heglly ()]
<4C1eVq(g) +8IIf = HeflI,q) + 8IIf — HegllZ,0)
< 4C1eVolg) + 16|l f = glI1,(q) +32C5eVolg) + 16]lf — gll7,q) + 16lly — HegllZ, (o)
< 4C1eValg) + 32| f — 9ll7,q) + 32CIeValg) +16C5eVo(g)
< 32/|f — g7, + (4C1 +48C3)eValg).
where we have used (9.10) and (8.21) of Theorem 8.3.
Combining all our estimates we obtain
(9-15) |If = HefllLyq) + € Vo(He(f) < 98I — gl (q) + (Ca + 148C5 +4C1)e V()
which gives (9.5) by taking the infimum over all ¢ € BV. O

10. Interpolation spaces between L, and BV.
As a by product of our results, we shall obtain several results concerning interpolation

spaces between Ly(Q) and BV(Q). For each 0 < a < 1 and 0 < ¢ < o0, let AF(L2(Q))
denote the set of functions f € Ly(Q) such that

(10.1) [ Flag (L)) = NN oN(FDleg (7 ) < o0

where on(f) = infyesy || — 9llz,(Q), v is any of the three families ¥, ¥ or X%, and
with €7 the {4 norm with respect to Haar measure:

(i lan] ) 0< g < oo
[(an)lle; = _
SUD,, > [@nl, q = oo.
Then, it follows from the Jackson and Bernstein estimates, which were proved through-
out the paper for these different families of approximation spaces, that

(10.2) A7 (L2(Q)) = (L2(Q), BV(@))ayy, 0<a <1, 0<g< o0

with equivalent norms, where (L2(Q),BV(Q))a,q are the real interpolation spaces for the
pair (L2(Q),BV(Q)) (see [DL, Chapter 5] for the definition of interpolation spaces and
for the general mechanism relating these with approximation spaces, through Jackson and

Bernstein estimates).
Moreover, it was shown in [DP] that

(10.3) AF(L(Q)) = (L2(Q), B1 (L1(Q)))og:

in the case of the particular family 3%;.
We thus obtain the following corollary to our results, where the second statement ex-
ploits the known interpolation results for Besov spaces (see [T] or [DP1]).
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Corollary 10.1. We have

(10.4)

(L2(Q):BV(Q))ayg = (L2(Q), B (L1(@))ayg. 0<a <1 0<g=<oo

and in particular

(10.5)

(L2(Q), BV(Q))a,g = B4(Ly(Q)), 0<a <1, 1/¢=1/2+a/2.
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