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Abstract

We review and expand somewhat on some recent developments concerning the
construction and analysis of piecewise polynomial estimators for the regression prob-
lem in Mathematical Learning Theory. The discussion will center on two issues. The
first of these is computational efficiency including possible online capability. The
second is universality by which we mean the capability of the estimator to give rise
to optimal convergence rates for a possibly wide class of prior classes without using
any a-priori knowledge on the memebership of the regression function to any of
these classes. More precisely, the main point of interest are estimators for which the
probability of exceeding an optimal rate tends to zero as the number m of observed
data increases. We focus on nonlinear methods built on piecewise polynomial ap-
proximation on adaptively refined partitions. We describe a class of schemes that
are inspired by thresholding concepts for wavelet expansions. We point out obsta-
cles to treating piecewise polynomials of degree higher than one as compared with
piecewise constant estimators and discuss several possible remedies.

Key Words: Regression, universal piecewise polynomial estimators, complexity regular-
ization, optimal convergence rates in probability, adaptive partitioning, thresholding
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1 Introduction

Increasingly complex measuring devices along with growing computing and data storage
capacities lead to the aquisition of enormous data sites typically hiding the essential
information one is looking for. The quantifiable extraction of information embedded in
large data sets that are typically polluted by noise is therefore a central task which is of
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growing importance in many application areas ranging from science and technology over
finance to social sciences. This is reflected by the rapid developments in Mathematical
Learning Theory that address such issues and provides a theoretical foundation for tasks
like pattern recognition, classification and regression. Mathematical Learning Theory
draws on concepts from nonparametric statistics, functional analysis, numerical analysis
and last but not least from approximation theory. It is fair to say that the potential
synergies offered by the interplay of these disciplines have not been exhausted yet.
We do not attempt to give an even nearly representative overview of all of the most

recent exciting developments but rather focus on a segment that emphasizes the roles of
computational complexity and nonlinear approximation. Specifically, we will be concerned
with providing estimates in probability for the approximation of the regression function in
supervised learning when using piecewise polynomials on adaptively generated partitions.
We shall work in the following setting. We suppose that ρ is an unknown measure on

a product space Z := X × Y , where X is a bounded domain of Rd and Y = R. Given
m independent random observations zi = (xi, yi), i = 1, . . . ,m, identically distributed
according to ρ, we are interested in estimating the regression function fρ(x) defined as
the conditional expectation of the random variable y at x:

fρ(x) :=

∫

Y

ydρ(y|x) (1.1)

with ρ(y|x) the conditional probability measure on Y with respect to x. We shall use
z = {z1, . . . , zm} ⊂ Zm to denote the set of observations. We denote by ρX the marginal
probability measure on X defined by

ρX(S) := ρ(S × Y ), (1.2)

and always assume that ρX is a Borel measure on X. We have

dρ(x, y) = dρ(y|x)dρX(x). (1.3)

The interest in fρ lies among other things in the following fact. Defining the risk
functional

E(f) :=

∫

Z

(y − f(x))2dρ, (1.4)

it is easy to check that
E(f) = E(fρ) + ‖f − fρ‖

2, (1.5)

where
‖ · ‖ := ‖ · ‖L2(X,ρX), (1.6)

and L2(X, ρX) consists of all functions from X to Y which are square integrable with
respect to ρX . Thus, fρ is the minimizer of E(f) over f ∈ L2(X, ρX).
This type of regression problem is referred to as distribution-free since we make no

assumptions of the distribution ρ. A recent survey on distribution free regression theory
is provided in the monograph [13], which includes most existing approaches to analyzing
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their rate of convergence in the expectation sense, i.e. to provide estimates for E(‖fz−fρ‖2)
where the expectation is taken with respect to the product measure ρm.
It should be emphasized that a central issue in Learning Theory is to provide estimates

for fρ under minimal restrictions on the measure ρ since this measure is unknown to us.
In this paper, we shall always work under the assumption that for each x,

|y| ≤M, (1.7)

almost surely. It follows in particular that |fρ| ≤ M . This property of ρ can often be
inferred in practical applications.
It is desirable to obtain stronger estimates than just for the expectation. Therefore,

our objective will be to find an estimator fz for fρ based on z such that the quantity
‖fz−fρ‖ is small in probability. Specifically, we would like to bound P{‖fz−fρ‖ > η} for
thresholds η that are allowed to decay with increasing sample size m. Generally speaking
bounds in probability are much stronger than those in expectation since from probability
bounds we can infer good estimates in expectation while in the other direction estimates
in expectation imply only rather weak probability bounds.
Our guiding criteria for the construction of estimators are discussed in § 2 centering,

in particular, on the notion of universality. In § 3 we review briefly some known concepts
such as complexity regularization as a means to realize universality. In particular, we
apply this to piecewise polynomial estimators on isotropic and anisotropic partitions. We
indicate how to increase in this case the efficiency of complexity regularization in the
spirit of CART algorithms by exploiting the special additive structure of the objective
functionals. § 4 is devoted to universal piecewise polynomial estimators based on adaptive
partitioning by thresholding. On one hand, this complies better with online demands. On
the other hand, in the piecewise constant case this gives rise to the desired optimal rates
in probability. We indicate why this result does not carry over in full generality to the
case of higher polynomial degrees and discuss circumstances under which optimal rates
are retrieved. We conclude in § 5 with further possible ways of improving the results for
piecewise polynomial estimators either by modifying the estimator or by estimating the
performance for individual regression functions rather than for classes of such functions.

2 Guiding Criteria

A common approach to approximating the regression function is to choose an hypothesis
(or model) classH = HN that offers N degrees of freedom, where N = N(m) will typically
depend on the sample size m and then look for elements fz ∈ HN that approximate fρ
as well as possible based on the knowledge of z. The construction of fz should take two
aspects into account that typically work against each other, namely (I) computational
efficiency - one has to handle possibly very large data sets - and (II) quality. According
to the preceding discussion, quality can be expressed in terms of estimates for the error
‖fρ−fz‖ which itself is a random variable. So one can ask for decay rates of the quantities

P{‖fρ − fz‖ ≥ η}, η > 0 or E(‖fρ − fz‖2) (2.1)

as the sample size m increases.
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Of course, concrete rates for either quantity can only be expected under some as-
sumptions on fρ. A typical assumption is that fρ belongs to some compact subset Θ of
L2(X, ρX) often referred to as a prior on fρ.
Compactness can be described in various ways, e.g. by the asymptotic behavior of

entropy or covering numbers which is a measure of the metric thickness of a set. Another
way is to impose smoothness on fρ relative to L2(X, ρX). However, since ρX is unknown it
is not clear what this means. A third way, which is the one adopted here, is to characterize
compactness through approximability. To explain this, we think of any given hypothesis
class H as a collection of functions on X that can be described by d(H) parameters –
degrees of freedom. When H is a linear space one would have d(H) = dim H. Now given
a family of such sets {H} we consider the corresponding approximation classes

As = As({H}) := {f ∈ L2(X, ρX) : inf
d(H)≤N

inf
g∈H
‖f − g‖ =: σN(f, {H}) ≤ CN−s

for some C <∞}. (2.2)

For a given f the infimum of all constants C for which the above bound holds is |f |As :=
supN∈NN

sσN(f, {H}) which is a (quasi-) seminorm and ‖ · ‖As = ‖ · ‖ + | · |As defines a
quasi-norm for the space As. Clearly for each s > 0 any bounded subset of As is compact
in L2(X, ρX).
Of course, the space As({H}) depends on the collection {H} of hypothesis spaces

and, as we shall point out later, in some cases As can also be described by regularity
properties. One expects that the richer {H} is the larger is the class As({H}), i.e. the
more functions can be recovered at a given rate N−s using at most N degrees of freedom
within that framework. An important distinction is when for each N there exists at most
one class H = HN in {H} with d(H) = N and HN is a linear space. The corresponding
approximation method (of taking the L2(X, ρX)-orthogonal projection from HN) is then
called a linear approximation method. This is to be contrasted with the case where several
competing choices of H each being determined by N parameters. The selection among
all the competing equally complex candidates that minimizes the projection error is then
nonlinear since it depends on the particular approximant. Nonlinear methods will play
an important role in what follows.
At any rate, whatever the collection {H} is, one faces two questions: When fρ belongs

to some class As({H}), i.e. it can be approximated in ‖ · ‖ by elements from some H with
d(H) ≤ N to accuracy N−s,

(i) what is the best decay rate of the quantities in (2.1) when the sample size m grows?

(ii) how can one construct estimators fz that match this rate?

As we shall see, the difficulties to be faced for (ii) depend very much on how much infor-
mation one is willing to assume about fρ. For instance, is the estimator allowed to use s
as an active parameter to find a good compromise between goodness of fit and variance?
Of course, in most practical situations one would not know beforehand the prior class Θ,
or values of s for which fρ ∈ As. So a more refined question would be:
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How to construct fz so that it recovers the best possible rate for a possibly
large range of s > 0 without using s in the actual algorithm?

An estimation scheme with this latter property is called universal and universality is
a central issue throughout the subsequent discussion. We shall briefly review next two
known concepts that reflect the essence of the problem.

3 Some Known Results on Estimates in Expectation

3.1 Linear Methods

When H = HN is a linear space of dimension N , a natural way to build an estimator is
to mimic (1.4), i.e. to choose fz as the minimizer of the empirical risk

f̃z := argmin
f∈H

Ez(f), with Ez(f) :=
1

m

m∑

j=1

(yj − f(xj))
2. (3.1)

In other words, f̃z is the best approximation to (yj)
m
j=1 from H in the the empirical norm

‖g‖2m :=
1

m

m∑

j=1

|g(xj)|
2. (3.2)

So the computation of f̃z is essentially reduced to solving (possibly large) linear systems.
While fρ is known to be bounded by M , such a least squares fit might very well give

rise to approximations violating this bound significantly, a point that will be taken up
later again. Such a violation is a serious obstruction to the analysis of the performance of
such estimators which typically involves concentration inequalities requiring L∞ bounds.
Therefore, one applies a truncation step as a postprocessing to obtain

fz := TM(f̃z), with TM(g) := sgn(g)min{M, |g|}. (3.3)

For estimators of this type the following general result can be found in [13].

Theorem 3.1 For an arbitrary linear space HN of dimension N and fz defined by (3.3),
one has 1

E(‖fρ − fz‖2) <∼
N logm

m
+ inf
g∈HN

‖fρ − g‖
2. (3.4)

The first term in this bound reflects the uncertainty due the variance of the data while
the second one describes the approximability of fρ. Clearly, the bound is minimized by
equilibrating variance and bias. Hence whenever fρ belongs toAs({HN}N) for some s > 0,

1Here and later we use the notation A <∼ B to mean that A ≤ CB with C a constant that does
not depend on the parameters involved unless explicitly stated. Similarly A ∼ B means A ≤ CB and
B ≤ CA.
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the term infg∈HN ‖fρ − g‖
2 can be bounded by |fρ|2AsN

−2s. These bounds are balanced
when choosing N ∼ (m/ logm)1/2s+1 which yields

E(‖fρ − fz‖2) <∼

(
logm

m

) 2s
2s+1

. (3.5)

The rate shown in (3.5) is actually (up to logarithmic factors) best possible, see [11].
However, to realize it, one needs to know s in order to choose the right dimension
N = N(m, s). So if this knowledge is not available - as would be usually the case in
practice - an improper choice of N would give rise to an unsatisfactory performance of
the estimator which is clearly not universal. Note that in the above situation the reference
approximation method is linear.

3.2 Nonlinear Methods - Model Selection

The price to be paid for obtaining universality is to employ nonlinear estimation schemes.
A widely used and very flexible paradigm is model selection. Instead of an a-priori pre-
scription of the trial space H (independent of the data) one allows the estimator to select
from a classMm = {H} of “models” where the classMm depends on the data size m. A
common way of organizing data dependent selection is through complexity regularization.
The complexity or richness of each hypothesis space Hp,m is described by a penalty term
penm(H). For each class one takes again the truncated least squares estimator

fH,m := TM

(

argmin
g∈H

( 1
m

m∑

i=1

(g(xi)− yi)
2
))

, (3.6)

and then selects one of them by

fz := argmin
H∈Mm

{
1

m

m∑

i=1

(fH,m(xi)− yi)
2 + penm(H)

}

. (3.7)

The following theorem ([13, Thm. 12.1]) gives sufficient conditions for this estimator to
exhibit optimal performance. In its formulation H+ denotes the set of subgraphs of the
functions in H and VH+ denote its VC-dimension. Note that when H is a linear space one
has VH+ ≤ dimH + 1, see e.g. [13].

Theorem 3.2 Suppose

penm(H) >∼
(logm)VH+ +

cH
2

m
, H ∈Mm, (3.8)

where cH > 0 satisfies ∑

H∈Mm

e−cH ≤ 1. (3.9)

Then,

E(‖fρ − fz‖2) ≤ 2 inf
H∈Mm

{
inf

g∈Hp,m
‖fρ − g‖

2 + penm(p)

}
+

c

m
. (3.10)

Note that the penalization is not controlled by some smoothness measure but solely by
the complexity of the corresponding model. To illustrate the role of the various ingredients
it is instructive to consider the following example.
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3.2.1 Piecewise Polynomials on Adaptive Partitions

We shall restrict our discussion to the case X = [0, 1]d and the case of dyadic partitions.
However, all results would follow in the more general setting described in [2].
Let Dj = Dj(X) be the collection of dyadic subcubes of X of sidelength 2−j and

D := ∪∞j=0Dj. These cubes are naturally aligned on a tree T = T (D). Each node of the
tree T corresponds to a cube I ∈ D. If I ∈ Dj, then its children are the 2d dyadic cubes
J ⊂ Dj+1 with J ⊂ I. We denote the set of children of I by C(I). We call I the parent of
each such child J and write I = P (J). A proper subtree T0 of T is a collection of nodes
of T with the properties: (i) the root node I = X is in T0, (ii) if I 6= X is in T0 then its
parent is also in T0.
We obtain (dyadic) partitions Λ of X from finite proper subtrees T0 of T . Given any

such T0 the outer leaves of T0 consist of all J ∈ T such that J /∈ T0 but P (J) is in T0.
The collection Λ = Λ(T0) of outer leaves of T0 is a partition of X into dyadic cubes. It is
easily checked that

#(T0) ≤ #(Λ) ≤ 2
d#(T0). (3.11)

Figure 3.1: Local mesh refinement

A uniform partition of X into dyadic cubes consists of all dyadic cubes in Dj(X)
for some j ≥ 0. Thus, each cube in the corresponding uniform partition Λj has the
same measure 2−jd. Another way of generating partitions is through some possibly local
refinement strategy. One begins at the root X and decides whether to refine X (i.e.
subdivide X) based on some refinement criteria. If X is subdivided then one examines
each child and decides whether or not to refine such a child based on the refinement
strategy. Partitions obtained this way are called adaptive.
Given a dyadic cube I ∈ D, and a function f ∈ L2(X, ρX), we denote by pI(f) the

best approximation to f on I:

pI(f) := argmin
p∈ΠK

‖f − p‖, (3.12)

where ΠK is the space of polynomials of degree at most K in d variables.
Given K ∈ N and a partition Λ of X, let us denote by SKΛ the space of piecewise

polynomial functions of degree K subordinate to Λ. Each S ∈ SKΛ can be written in the
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form
S =

∑

I∈Λ

pIχI , pI ∈ ΠK , (3.13)

where for G ⊂ X we denote by χG the indicator function, i.e. χG(x) = 1 for x ∈ G and
χG(x) = 0 for x 6∈ G.
We shall consider the approximation of a given function f ∈ L2(X, ρX) by the elements

of SKΛ . The best approximation to f in this space is given by

PΛf :=
∑

I∈Λ

pI(f)χI , pI(f) := argmin
p∈ΠK

‖f − p‖. (3.14)

This suggests a natural discrete counterpart as an estimator from H = SKΛ . Given the
data z and any Borel set I ⊂ X, we define

pI,z := argmin
p∈ΠK

1

m

m∑

i=1

(p(xi)− yi)
2χI(xi). (3.15)

When there are no xi in I, we set pI,z = 0. Moreover, for any partition Λ of X we define
the estimator fz as

fz := fSKΛ :=
∑

I∈Λ

TM(pI,z)χI (3.16)

with TM the truncation operator defined earlier. Note that this requires solving (in parallel
if needed) only small least squares problems of fixed size dim ΠK . Moreover, the empirical
minimization (3.15) is not done over the truncated polynomials, since this is numerically
much more delicate and expensive. Instead, truncation is only used as a post processing.
Note that V(SKΛ )+

<
∼ K,d

#Λ.

In this framework a simple classMm of models would comprise the spaces SKΛj j ≤ j̄,
which is a hierarchy of spaces of piecewise polynomials on uniform partitions up to some
data dependent level j̄ of resolution. In this case, one can choose the penalty weights
cSKΛj
∼ #Λj ∼ 2jd (with a constant depending on K and d) so that (3.9) is satisfied and

Theorem 3.6 applies, see [13, Theorem 12.1].
A richer model class is to consider any partition of X into dyadic cubes generated by a

tree of limited depth, namelyMm := {SKΛ : Λ(T ), T a tree of bounded depth j̄}. Count-
ing the number of possible partitions of a given size, one can continue to use the penalty
terms as above. Namely, one can choose penm(S

K
Λ ) ∼

#Λ logm
m

to obtain, upon balancing
the approximation error bound and the penalty, the following immediate consequence of
Theorem 3.2.

Corollary 3.3 Let γ > 0 be arbitrary and let j0 = j0(γ,m) be defined as the smallest
integer j such that 2−jd ≤ (logm/m)1/2γ. Consider the set Mm := {SKΛ } corresponding
to partitions Λ induced by proper trees T ⊂ ∪j≤j0Λj. Then, there exists κ0 = κ0(d,K)
such that if

penm(S
K
Λ ) =

κ logm

m
#(Λ)
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for some κ ≥ κ0, the estimator fz : defined by 3.7 satisfies

E(‖fρ − fz‖2) ≤ C
( logm

m

) 2s
2s+1

, m = 1, 2, . . . , (3.17)

whenever fρ ∈ Aγ({SKΛj}j∈N) ∩ A
s({SKΛ }#Λ≤N,N∈N). Here, the constant C depends on

κ,M, |fρ|As({SKΛ }#Λ≤N,N∈N), |fρ|Aγ({SKΛj }j∈N)
,

but not on m.

The assumption on fρ that guarantees the above rate in expectation consists of two
parts. First fρ ∈ Aγ({SKΛj}j∈N) means that for the above γ, which could be taken ar-
bitrarily small, fρ should be approximable at that rate by a linear method based on a
hierarchy of uniformly refined piecewise polynomials. The algorithm depends on that γ
through the choice of the largest tree depth j0. The smaller γ, the larger j0 and the larger
the computational effort. Nevertheless, no precise knowledge of γ is needed to achieve
an optimal rate. Its choice only affects the range of those functions for which an optimal
rate is attained by the scheme. The approximability of fρ by the nonlinear model class
expressed by fρ ∈ As({SKΛ }#Λ≤N,N∈N) does not enter the scheme but determines the ac-
complished rate. In this sense the scheme is universal for the range of rates attainable by
piecewise polynomials on adaptive partitions.
To illustrate the meaning of the assumption fρ ∈ As({SKΛ }) let us consider the special

case where ρX is equivalent to the Lebesgue measure. In this case it is known that

Bsdp (Lp) ↪→ As as long as
1

p
< s+

1

2
, s ≤ k.

Thus the smoothness that is needed to guarantee a certain adaptive approximation rate
in L2 is significantly weaker than the corresponding smoothness measured also in L2 that
would guarantee the same rate if linear methods were used.
This also hints at the problems that will be faced when dealing with large spatial

dimensions d, often referred to as Curse of Dimension. Realizing a rate s requires larger
and larger smoothness ds, or in other words, the computational effort required by schemes
based on such refinement strategies grows exponentially in d. Methods based on dyadic
partitions are therefore not suitable for large d.
Note that the above approach yields estimates in expectation. We shall see later that

it fails in general to provide the sharper estimates in probability mentioned in (2.1). A
further major drawback of this very versatile principle is that it is often extremely (and
sometimes even prohibitively) expensive from a computational point of view, and there-
fore far from being compatible with online demands. However, for the above particular
example things are slightly different as will be pointed out next.

3.2.2 Adaptive Splits Using CART

One can turn to even richer model classes than those obtained as above by (isotropic)
dyadic splits, while still maintaining essentially the same conclusions. Instead of subdi-
viding cells in all directions one can consider anisotropic splits e.g. by halving cells with
the aid of d hyperplanes that are orthogonal to one of the d coordinate axes.
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Any such partition of X will be denoted by Λ(X) or briefly Λ. Accordingly, for any
subset I ⊂ X we sometimes write Λ(I) to indicate that we are dealing with a partition
of I. If we decide to refine a cell I we have d different choices correpsonding to partitions
I = I0j ∪ I

1
j , j = 1, . . . , d. We shall say a partition Λ is admissible if it is obtained

by refinement which at each applications replaces a cell I by one of the pairs {I0j , I
1
j }.

We denote by P̂(I) the set of all admissible partitions Λ = Λ(I) of I and write briefly
P̂ = P̂(X).
Any admissible partition Λ can be identified with a labelled binary tree T (Λ) (with root

I when Λ ∈ P̂(I)), where the label j at each node indicates that the children are obtained
by a j-split. Thus we could label all elements in Λ as Iej where, for e = (e1, . . . , en),
ei ∈ {0, 1}, j = (j1, . . . , jn) ∈ {1, . . . , d}n we have

I
e1,...,en−1
j1,...,jn−1

= I
e1,...,en−1,0
j1,...,jn−1,jn

∪ Ie1,...,en−1,1j1,...,jn−1,jn
(3.18)

i.e. I has resulted from n successive splits of X. The vector j encodes the type of splits
used along the way and e records which of the two children have been used at each prior
stage.
To obtain a numerically feasible scheme we shall always restrict P̂ (and hence the

P̂(I)) to a finite set obtained by requiring that in the split history j of any of its cells
each split type j may appear at most j0 times, i.e. the highest spatial resolution is again
bounded.
We now takeMm as the set of all H = SKΛ with the above restrictions on the depth

of Λ. Note that dimSKΛ = (#Λ)
(
k+d
d

)
and hence is proportional to #Λ. We shall define

the penalty function pen(H) and the constants cΛ for H = SKΛ ∈ Mm exactly as before.
Namely, cΛ = c

∗#(Λ) (where the constant c∗ is yet to be fixed) and

penm(H) ≥
c(logm)#Λ + cΛ

m
. (3.19)

To verify (3.9) we note that the binary tree corresponding to a partition Λ with
N + 1 = #Λ cells has N interior nodes (nodes that are not leaves) each of which can be
labelled in d ways. Let t(N) be the number of binary trees with 2N + 1 nodes (hence N
interior nodes). Then the number of possible partitions with N cells is given by t(N)dN .
Moreover, it is known that t(N) = (N + 1)−1

(
2N
N

)
<
∼ 4

n/n3/2, see e.g. [6]. Hence, one
can still ensure that

∑

H∈Mm

e−cH ≤ C ′
∞∑

N=1

dN4NN−3/2e−γN ≤ 1 (3.20)

for c∗ sufficiently large. We can therefore apply Theorem 3.2 with fH,m and fz defined as
in (3.6) and (3.7) respectively and arrive at the analogue of Corollary 3.3.
Let us briefly point out next that, due to the particular structure of the cost functional,

complexity regularization can in this case of adaptive piecewise estimators (in the previous
setting of isotropic refinements as well as in the more general framework of anisotropic
refinements) be realized in a relatively efficient way, see [12]. It suffices to explain this for
the deterministic setting and for anisotropic splits.
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According to (3.20) we can take cΛ = c
∗#Λ and

penm(Λ) = µ#Λ, (3.21)

where µ := µ(m) := κ logm/m. For any admissible cell I and any admissible partition Λ
of I, consider the local objective functional

φ(Λ|I) := ‖fρ − PΛ(fρ)‖
2
L2(ρX ,I)

+ penµ(Λ).

The minimization of such functionals will greatly benefit from the above form of the
penalty term which entails the following additive structure. Suppose that I = I ′ ∪ I ′′ and
Λ is a partition for I whose restrictions to I ′, I ′′ are denoted by Λ′,Λ′′, respectively. Then,

φ(Λ|I) = φ(Λ′|I ′) + φ(Λ′′|I ′′). (3.22)

In order to find a partition Λ∗ that minimizes φ(Λ|X) one can proceed as follows.
Consider for any admissible cell I the local square error

eI :=

∫

I

(fρ − pI(fρ))
2dρX = inf

p∈Πk

∫

I

(fρ − p)
2dρX .

The key observation is how to build from locally optimal partitions on pairs of cells an
optimal partition on the parent cell. Let

w(I) := φ(Λ∗(I, µ)|I) with Λ∗(I, µ) = argmin
Λ∈P̂(I)

φ(Λ|I). (3.23)

Remark 3.4 For any I, we have

w(I) = eI + µ, Λ∗(I, µ) = {I} (3.24)

if and only if
eI + µ ≤ w(I0i∗) + w(I

1
i∗) := mini=1,...,dw(I

0
i ) + w(I

1
i ). (3.25)

Moreover, if w(I) ≥ w(I0i∗) + w(I
1
i∗), then

w(I) = w(I0i∗) + w(I
1
i∗), Λ∗(I, µ) = Λ∗(I0i∗ , µ) ∪ Λ

∗(I1i∗ , µ). (3.26)

Also
eI ≤ µ =⇒ Λ∗(I, µ) = {I}. (3.27)

Proof: The equivalence of (3.24) and (3.25) as well as (3.26) follow immediately from the
additivity property (3.22). Since mini=1,...,dw(I

0
i )+w(I

1
i ) ≥ 2µ, (3.27) implies the validity

of (3.25) 2

In principle, this shows how to minimize φ(Λ|X) over Λ ∈ P̂ . Finding the true
optimum seems to require knowing all the eI , for any I that may appear in an element
of P̂ . The computation of these quantities (or later their empirical counterparts) can be
organized from coarse to fine, picturing all possible partitions in a d-dimensional array
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of copies of X where in direction i ≤ d only a refinement of the ith coordinate takes
place. The advantage is that whenever some I is encountered for which eI ≤ µ this cell
will, according to (3.27), never be refined. This may reduce the amount of computations
needed in the whole process.
Once the eI have been computed one can start pruning from the highest level downward

to coarser levels. Let Λ̂j0 denote the uniform dyadic partition of level j0 of X. Clearly,

any J ∈ Λ̂j0 has a sibling J
′ such that J ∪J ′ = I is a cell in some Λ′ ∈ P̂(X). w(J), w(J ′)

being known we know from Remark 3.4 how to form Λ∗(I, µ). Successively merging lower
level siblings from optimal higher level partitions eventually yields Λ∗(X,µ).
In the case of isotropic refinements one has to deal, of course, with significantly fewer

comparisons to determine local optimality. Let us also remark that in this case the search
of the optimal partition Λ∗ is known to be performed at a reasonable computational cost
using a CART algorithm (see e.g. [8] or [12]).
Notice that the estimator did not need to have knowledge of s and nevertheless obtains

the optimal performance. For a certain restricted range of s, one can actually prove similar
estimates also in probability (see [11]).
All the above strategies involve postprocessing a least squares estimator by a trunca-

tion so that the estimator is in general no longer an element of the approximation classes
H under consideration. This can be avoided by another approach developed in [14] and
also discussed in [13]. The least squares procedure there is confined to the intersection
of the approximation class H with some L∞-ball. On one hand, it is then possible to
establish optimal rates in expectation and probability for an estimator that remains in
the chosen approximation class. On the other hand, one has to perform now a quadratic
minimization under an L∞ state constraint which is a numerically much more demanding
task than solving the linear problems yielding the unconstrained least squares estimator.
Moreover, it is not clear which L∞ bound should be chosen so as to avoid an unnecessary
degrading of the approximation properties of the estimator. Therefore we confine the
subsequent discussion to unconstrained least squares estimators.

4 Adaptive Partitioning by Thresholding

Despite the possible computational speedup offered by CART in connection with com-
plexity regularization, a principal limitation of this approach seems to be that, in general,
it does not lead to optimal estimates in probability, see (2.1) - a fact that will become
clearer later.
In the case of isotropic partitioning, an alternative is offered by adaptive partitioning

based on thresholding techniques as proposed recently in [2, 3]. Let us briefly recall the
main ingredients of this approach adhering to the above notation for isotropic refinements.
In particular, we denote again by Λj the uniform partition of level j, giving rise to the
approximation spaces As({SKΛj}j∈N).
We shall consider adaptive partitions that are obtained from a refinement criterion

that is motivated by adaptive wavelet constructions such as those given in [9] for image
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compression. Given a function f ∈ L2(X, ρX), we define the local atoms

ψI(f) :=
∑

J∈C(I)

pJ(f)χJ − pI(f)χI , I 6= X, ψX(f) := pX(f), (4.1)

and
εI(f) := ‖ψI(f)‖. (4.2)

Clearly, we have

f =
∑

I∈D

ψI(f), (4.3)

and since the ψI are mutually orthogonal, we also have

‖f‖2L2(X,ρX) =
∑

I∈D

εI(f)
2. (4.4)

The number εI(f) gives the improvement in the L2(X, ρX) error squared when the cell I
is refined.
We let T (f, η) be the smallest proper tree that contains all I ∈ D such that εI(f) > η.

Corresponding to this tree we have the partition Λ(f, η) consisting of the outer leaves of
T (f, η). We shall define some new smoothness spaces Bs which measure the regularity of
a given function f by the size of the tree T (f, η). Given s > 0, we let Bs be the collection
of all f ∈ L2(X, ρX) such that for p = (s+ 1/2)−1/2, the following is finite

|f |pBs := sup
η>0

ηp#(T (f, η)). (4.5)

We obtain the norm for Bs by adding ‖f‖ to |f |Bs . One can show that

‖f − PΛ(f,η)f‖ ≤ Cs|f |
1

2s+1

Bs η
2s
2s+1 ≤ Cs|f |BsN

−s, N := #(T (f, η)), (4.6)

where the constant Cs depends only on s. The proof of this estimate can be based on the
same strategy as used in [9] where a similar result is proven in the case of the Lebesgue
measure.
Invoking (3.11), it follows that every function f ∈ Bs can be approximated to order

O(N−s) by PΛf for some partition Λ with #(Λ) = N , i.e. Bs ⊆ As({SKΛ }#Λ≤N). This
should be contrasted with As = As({SKΛj}j∈N) which has the same approximation order
for the uniform partition. It is easy to see that Bs is larger than As. In classical settings,
the class Bs is well understood. For example, in the case of Lebesgue measure and dyadic
partitions we know that each Besov space Bsq(Lτ ) with τ > (s/d+1/2)

−1 and 0 < q ≤ ∞,

is contained in Bs/d (see [9]). This should be compared with the As where we know that
As/d = Bs∞(L2) as we have noted earlier.

4.1 An Adaptive Algorithm for Learning

In the learning context, we cannot use the algorithm described in the previous section
since the regression function fρ and the measure ρ are not known to us. Instead one can
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use an empirical version of this adaptive procedure based on the estimator given by (3.15)
and (3.16).
Our adaptive partitions are based now on an empirical analogue of the εI . For each

cell I in the master tree T , we define

εI(z) := ‖TM(
∑

J∈C(I)

pJ,zχJ − pI,zχI)‖m, (4.7)

where ‖ · ‖m is the empirical norm defined in (3.2).
To begin the description of the thresholding algorithm, we fix a parameter κ > 0 which

will be described in more detail later. With κ in hand, we define the threshold

τm := κ

√
logm

m
. (4.8)

As before, a data based adaptive partitioning requires limiting the depth of corresponding
trees. To this end, let γ > 0 be an arbitrary but fixed constant. We define j0 = j0(m, γ) as

the smallest integer j such that 2jd ≥ τ
−1/γ
m . We then consider the smallest tree T (τm, z)

which contains the set

Σ(z,m) := {I ∈ ∪j≤j0Λj : εI(z) ≥ τm}. (4.9)

We then define the partition Λ = Λ(τm, z) associated to this tree and the corresponding
estimator fz := fz,Λ. Obviously, the role of the integer j0 is to limit the depth search for
the coefficient εI(z) which are larger than the threshold τm. The essential steps of the
adaptive algorithm in the present setting read as follows:

Algorithm: Given z, choose γ > 0, and

• for j0(m, γ) determine the set Σ(z,m) according to (4.9);

• form T (τm, z),Λ(τm, z) and compute fz according to (3.16) for this partition.

For further comments concerning the treatment of streaming data we refer to an
analogous strategy outlined in [2].
The above algorithm has been analyzed in [2] in the case of piecewise constant approx-

imation for which the following result could be established.

Theorem 4.1 Let β, γ > 0 be arbitrary. Then, using piecewise constant approximations
in the above scheme, i.e. K = 0, there exists κ0 = κ0(β, γ,M) such that if κ ≥ κ0 in the
definition of τm, then whenever fρ ∈ Aγ ∩ Bs for some s > 0, the following concentration
estimate holds

P
{
‖fρ − fz‖ ≥ c̃

( logm
m

) s
2s+1

}
≤ Cm−β, (4.10)

where the constants c̃ and C are independent of m.
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First note that truncation does not play any role in the case of piecewise constant
approximation since in that case the constant of best empirical approximation automat-
ically is ≤ M in absolute value. The theorem gives the desired estimate for the error
‖fρ − fz‖ in probability which is somewhat stronger than the estimates obtained in the
previous section. As mentioned earlier, from this one obtains a corresponding estimate in
expectation, see e.g. [2]. The order of approximation can be shown to be optimal save for
the logarithmic term by using the results on lower estimates from [11]. Finally, note that
the role of the space Aγ, as in Corollary 3.3, is a minor one since the only assumption on
γ is that it be positive. This assumption merely guarantees that a finite depth search will
behave close to an infinite depth search.
A natural question would be to have an analogous result for piecewise polynomial

estimators of higher degree. In fact, the previous estimates in expectation made no
distinction concerning the degree of the polynomials and allowed one to fully exploit the
superior approximation power offered by higher degrees.

4.2 A Principal Obstruction

In this regard an important observation is that the analogue of Theorem 4.1 does not
hold in full generality when piecewise polynomials of degree higher than zero are used
in place of piecewise constants. This can be shown with the aid of a counterexample for
which empirical risk minimization does not perform well in probability and whose essence
is conveyed by the following figures 4.2 and 4.3 below.
Referring to [3] for the technical details, one first considers approximation by linear

functions on the interval X = [−1, 1] for the bound M = 1 where the data yi are given
exactly as samples of the piecewise contant function indicated in Figure 4.2. For each
m = 1, 2, . . ., we define a measure ρX = ρX,m on [−1, 1] is concentrated at the points
±1,±γ, namely

ρX := (1/2− κ)(δ−γ + δγ) + κ(δ−1 + δ1), (4.11)

where γ := γm =
1
3m
and κ := κm := m

−β. We then define ρ = ρm completely by

y(γ) = 1, y(−γ) = −1, y(±1) = 0, with probability 1. (4.12)

Therefore, there is no randomness in the y direction.
One can then show that the empirical least square minimizer

p̂ = argmin
g∈Π1

m∑

i=1

|g(xi)− yi|
2

assumes with high probability a position indicated in Figure 4.3. In fact, the intersection
of the estimator with the x-axis is shown to be at least 2γ away from the origin which
implies an error of order one. More precisely, given any β > 2, there exist absolute
constants c, c̃ > 0 such that for each m = 1, 2, . . ., the above distribution ρ = ρm satisfies

P{‖fρ − T (p̂)‖ ≥ c} ≥ c̃m−β+1. (4.13)
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1−1 0 γ

Figure 4.2: Best linear fit

One can now adjust the above situation to give information about piecewise linear
approximation on adaptively generated dyadic partitions by rescaling. We let I be an
interval at the finest scale allowed under our restrictions of depth search. If we allow
dyadic partitions with more than m elements, we can approximate fρ exactly so that fρ
is in Bs with s = min(β− 2, β/2). On the other hand, any adaptively generated partition
with at mostm elements will have an interval J containing I. For any of the corresponding
bad draws z we will have

‖fρ − f̂z‖ ≥ c (4.14)

on a set of z with probability larger than c̃m−β+1.
This shows that empirical least squares using piecewise linear functions on adaptively

generated partitions will not provide optimal bounds with high probability. Note that
the above results are not in contradiction with optimal estimates in expectation. The
counterexample also indicates, however, that the arguments leading to optimal rates in
expectation based on complexity regularization cannot be expected to be refined in general
towards estimates in probability.
In view of these observations, the following two options suggest themselves. First,

inspired by the above counterexample one can look for (hopefully weak) conditions on
the measure ρ under which one might still get optimal rates for piecewise polynomial
estimators of higher degree. Second, one can try to modify the estimators to cope with
the type of obstructions suggested by the example. In fact, regarding the first option, one
can show that, when imposing some restrictions on the marginal measure ρX , then high
probability results turn out to be possible as we shall next describe.
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1−1 0 γ

Figure 4.3: Estimator

4.3 The Case of Bounded Projections

For simplicity let us assume now that M = 1. The difficulty of bounding the projection
pI(fρ) seems to prevent one from showing that

pI := pI(fρ) := Argminp∈ΠK‖fρ − p‖ (4.15)

and its empirical counterpart

p̂I := T1

(
Argminp∈ΠK

1

m

m∑

i=1

χI(xi)(yi − p(xi))2
)
, (4.16)

are close with high probability. The closeness of these two quantities, however, already
played an important role in the analysis of the piecewise constant case [2]. We shall show
next that a favorable comparison of these two quantities indeed becomes possible when
the projection pI(fρ) remains below some fixed bound

‖pI‖L∞(I) ≤M ′. (4.17)

We say I is good if (4.17) holds.

Theorem 4.2 Suppose I is good, i.e. (4.17) holds. Then there exist uniform constants
c, c1, c2, depending only on M

′, K, d, such that fz given by (4.16) satisfies

P {‖fρ − p̂I‖ > δ} ≤ c1δ
−c2e−cmδ

2

, (4.18)

provided that
δ ≥ 32‖fρ − pI‖. (4.19)

Moreover, for any δ satisfying (4.19) one also has

P {‖pI − p̂I‖ > δ} ≤ c′1δ
−c2e−cmδ

2

. (4.20)
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The proof of this theorem is based on the following concentration result from [13,
Theorem 11.2] that will play also an important role in the subsequent discussion.

Theorem 4.3 Let F be any set of bounded functions f and consider the discrete norm

‖f‖t :=
1

2m

2m∑

j=1

|f(tj)|
2. (4.21)

Let N (F , η, t) denote the covering number which is the smallest number of balls of radius
η which cover F with respect to the norm ‖ · ‖t. Then one has

P {‖f‖ − 2‖f‖m > η for some f ∈ F} ≤ 3e−
mη2

288M2E (N (F , η, t)). (4.22)

Here the probability is with respect to z (note that ‖ · ‖m (see (3.2)) is a random variable
since it depends on z) and the expectation is with respect to t.

It is well known that if V is a linear space of dimension q and G := {TMg : g ∈ V }
then

N (G, η, t) ≤ (Cη)−(2q+1), 0 < η ≤ 1, (4.23)

with C = C(M) (see e.g. Theorems 9.4 and 9.5 in [13]).

Proof of Theorem 4.2: Given any sample set z as above let x := {x1, . . . , xm} be the
x component of z. We employ the empirical norm

‖f‖2x,m :=
1

m

m∑

i=1

|f(xi)χI(xi)|2,

imitating ‖ ·‖ = ‖ ·‖L2(ρX ,I). In order to use results involving this empirical norm we write

P {‖pI,z − fρ‖ > ε} ≤ P {‖pI,z − fρ‖ − 2‖pI,z − fρ‖x,m > ε/2}︸ ︷︷ ︸
=:P1

+P {‖pI,z − fρ‖x,m > ε/4}︸ ︷︷ ︸
=:P2

(4.24)
Denoting by λ = λ(K, d) the dimension of ΠK , we can invoke Theorem 4.3 applied to the
set F of functions fρ − pI,z. This gives

P1 <
∼ ε−ĉλe−cmε

2

, (4.25)

taking care of the first term on the right hand side of (4.24).
As for P2, we write

P2 =

∫
{P{‖pI,z − fρ‖x,m > ε/4 | x}} dρmX (4.26)

and we bound the probability inside the integral as follows. For fixed x = {x1, · · · , xm}
we can write

yi = fρ(xi) +Bi, (4.27)

18



where the Bi are independent random variables and such that |Bi| ≤ 1 and E(Bi) = 0. We
denote by y and B the corresponding vectors comprised of those yi, Bi for which xi ∈ I.
Now let Px : Rm → H(x), where H(x) is the space of traces of the elements in ΠK on x|I ,
be the ‖ · ‖x,m-orthogonal projector onto H(x). In a slight abuse of notation we denote
now by fρ, pI,z also their traces on x|I consisting of those xi that belong to I. In these
terms we can reexpress

pI,z := T1Px(fρ +B) = T1(Pxfρ + PxB). (4.28)

Clearly the dimension of H(x) is at most λ. Next we make use of the following elementary
observations

Remark 4.4 Suppose that |a| ≤ 1. Then one has

|a− T1(c+ d)| ≤ |a− T3(c)|+ |d|, |a− T3(b)| ≤ |a− b|. (4.29)

As a consequence of the first inequality in (4.29) we obtain with a = fρ(xi), c = Pxfρ,
d = PxB, on account of (4.28),

‖fρ − pI,z‖x,m ≤ ‖fρ − T3Pxfρ‖x,m + ‖PxB‖x,m. (4.30)

Moreover, by the second inequality in (4.29) we have

‖fρ − T3Pxfρ‖x,m ≤ ‖fρ − Pxfρ‖x,m ≤ ‖fρ − pI(fρ)‖x,m,

where we have used the optimality of Pxfρ with respect to ‖ ·‖x,m. Therefore we conclude
from (4.30) that

‖fρ − pI,z‖x,m ≤ ‖fρ − pI(fρ)‖x,m + ‖PxB‖x,m. (4.31)

Here we do not need any further truncation of PHfρ because of (4.17) Setting

P3 := P {‖fρ − pI(fρ)‖x,m > ε/8}, (4.32)

and

P4 :=

∫
P {‖PxB‖x,m > ε/8 | x}dρmX , (4.33)

it follows that
P2 = P {‖pI,z − fρ‖x,m > ε/4} ≤ P3 + P4. (4.34)

As for P3, we remark that since ‖fρ − pI(fρ)‖ ≤ ε/32 (see (4.19)), it follows that

P3 ≤ P{‖fρ − pI(fρ)‖x,m − 2‖fρ − pI(fρ)‖ > ε/16}. (4.35)

The function F := fρ − pI(fρ) is, by (4.17), bounded |F (x)| ≤ 1 + M ′. Invoking a
symmetric version of Theorem 4.3 to conclude that

P3 ≤ Cε−c̄λe−cmε
2

, (4.36)

which gives an exponential bound similar to P1.
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For estimating P4, we fix x = {x1, · · · , xm} and define A1, · · ·Aq an ‖·‖x,m-orthonormal
basis of H(x). Note that q ≤ λ. We now have

‖PxB‖
2
x,m =

q∑

j=1

|〈B, Aj〉|2, (4.37)

and therefore

P{‖PxB‖m > ε/8} ≤
q∑

j=1

P{|〈B, Aj〉| ≥
ε

8
√
λ
}. (4.38)

Now, we have 〈B, Aj〉 = 1
m

∑m
i=1BiA

j
i
χI(xi). We apply the following version of Hoeffd-

ing’s inequality : if ζ1, · · · , ζm are independent variables such that |ζi| ≤Mi and E(ζi) = 0
then

P{|
1

m

m∑

i=1

ζi| ≥ ε} ≤ 2e
−2 mε2

1
m

Pm
i=1

M2
i . (4.39)

Here M = 1, ζi = χI(xi)BiA
j
i and Mi = |A

j
i | so that

1
m

∑m
i=1M

2
i = 1. Therefore

P{‖PxB‖m > ε/8} ≤ 2λe−
mε2

32λ . (4.40)

It follows that

P4 ≤ 2λe
−mε

2

32λ . (4.41)

Combining all these results, the assertion follows. 2

4.4 Optimal Results in Probability under Regularity Assump-

tions on ρX

We shall exhibit next some conditions on the measure ρ that guarantee the validity of
(4.17) for any cell I. As before, we fix the polynomial degree K and define the projector
PΛ for any dyadic partition Λ by (3.14). The example in Section 4.2 indicates that a
strong concentration of ρX may cause steep slopes in the estimator and hence leads to
large deviations. The following assumption prohibits such a strong concentration and
ensures that the least squares projection is uniquely defined.

Assumption A: There exists a constant CA > 0 such that for each dyadic cube I, there
exists an L2(I, ρX)-orthonormal basis (LI,k)k=1,···,λ of ΠK (with λ the algebraic dimension
of ΠK) such that

‖LI,k‖L∞(I) ≤ CA(ρX(I))
−1/2, k = 1, . . . , λ. (4.42)

Hence on each I one has

pI(f) =
λ∑

k=1

〈f, LI,k〉L2(I,ρX)LI,k, (4.43)
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and in particular ρX(I) 6= 0. It follows that for all f ∈ L∞(X),

‖PΛf‖L∞ ≤ λCA‖f‖L∞ , (4.44)

i.e. the projectors PΛ are bounded in L∞ independently of Λ, [3].
It is readily seen that Assumption A holds when ρX is the Lebesgue measure dx or,

more generally for dρX = ω(x)dx where 0 < c ≤ ω(x) ≤ C. For further examples see [3].
Under Assumption A, one can estimate the discrepancy between the truncated least

squares polynomial approximation to fρ and the truncated least squares polynomial fit to
the empirical data. This should be compared with the counterexample of the last section
which showed that for general ρ we do not have this property. The following result was
established in [3] directly under Assumption A. Note that a slightly weaker estimate is
given by (4.20) under a weaker assumption.

Theorem 4.5 ([3]) There exists a constant c > 0 which depends on the constant CA in
Assumption A, on the polynomial space dimension λ = λ(K) of ΠK and on the bound M ,
such that for all I ∈ D

P{‖TM(pI)χI − TM(pI,z)χI‖ > η} ≤ c̃e−cmη
2

, (4.45)

where c̃ = 2(λ+ λ2), and the constant c in (4.45) depends on M and CA and behaves like
(MC2A)

−2.

From the basic estimate (4.45), we can immediately derive an estimate for an arbitrary
but fixed partition Λ consisting of disjoint dyadic cubes. If |Λ| = N , we have

P {‖fz,Λ − TM(PΛfρ)‖ > η} ≤ P {‖TM(pI)χI − TM(pI,z)χI‖ >
η

N1/2

for some I ∈ Λ},

which yields the following analogue to Theorem 2.1 of [2].

Remark 4.6 Under Assumption A one has for any fixed integer K ≥ 0, any partition Λ
and η > 0

P {‖fz,Λ − TM(PΛfρ)‖ > η} ≤ C0Ne
−cmη

2

N , (4.46)

where N := #(Λ) and C0 = C0(λ) and c = c(λ,M,CA).

We can then derive by integration over η > 0 an estimate in the mean square sense

E (‖fz,Λ − TM(PΛfρ)‖2) ≤ C
N logN

m
, (4.47)

similar to Corollary 2.2 of [2], with C = C(M,CA, λ).
Based on these findings one can derive now optimal approximation rates for post-

truncated least squares estimators on uniform partitions Λj of the form

P
{
‖fρ − fz‖ > (c̃+ |fρ|As)

( logm
m

) s
2s+1

}
≤ Cm−β, (4.48)

where, however, the choice of the right dyadic refinement level hinges on the knowledge
of s, so that these estimators are not universal. Therefore we focus in what follows on the
adaptive counterpart given by the Algorithm in Section 4.1.
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Learning on Adaptive Partitions

We now turn to an analysis of the adaptive algorithm defined in the §4.1. This entails
extensions of Theorem 4.1 in two ways. Recall that the depth of the tree is limited by
j0 = j0(m, γ) the smallest integer j such that 2

jd ≥ τ
−1/γ
m .

We continue to assume that the measure ρ satisfies Assumption A. One roadblock to
having a self contained algorithm is the fact that the constant CA is unknown to us. This
has a simple remedy which is to enlarge the threshold somewhat. To illustrate this, let
us take τm :=

logm√
m
. Using this threshold, the same analysis as in §5 of [2] shows that this

algorithm is universally consistent. Moreover, we have the following theorem (see [3]) for
the performance of this algorithm.

Theorem 4.7 ([3]) Given an arbitrary β ≥ 1 and γ > 0, we take the threshold τm :=
logm√
m
.

Then the adaptive algorithm has the property that whenever fρ ∈ Aγ ∩Bs for some s > 0,
the following concentration estimate holds

P
{
‖fρ − fz‖ ≥ c

( logm
√
m

) 2s
2s+1

}
≤ m−β, (4.49)

with c = c(s, CA, λ, |fρ|Bs , |fρ|Aγ ), as well as the following expectation bound

E (‖fρ − fz‖2) ≤ C
( logm
√
m

) 4s
2s+1

(4.50)

with C = C(s, λ,M,CA, d, |fρ|Bs , |fρ|Aγ ). For a general regression function fρ, we have
the universal consistency estimate

lim
m→+∞

E(‖fρ − fz‖
2) = 0, (4.51)

which in turn implies the convergence in probability: for all ε > 0,

lim
m→+∞

P{‖fρ − fz‖ > ε} = 0. (4.52)

The same conclusion could be obtained for any threshold of the form

τm := κ(m)

√
logm

m
, (4.53)

where κ(m) is a sequence which grows very slowly to +∞. This would result in a slightly
different logarithmic factor in the excess rates. In fact, one could actually take just

τm := κ0

√
logm
m
if CA was known to us (see [3] for details).

The strategy for proving Theorem 4.7 is to show that the set of coefficients chosen by
the adaptive empirical algorithm are with high probability similar to the set that would
be chosen if the adaptive thresholding took place directly on fρ. This will be established
by probability estimates which control the discrepancy between εI and εI(z). This is given
by the following result.
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Lemma 4.8 For any η > 0 and any element I ∈ Λj0, one has

P {εI(z) ≤ η and εI ≥ 8λCAη} ≤ c̃(1 + η−C)e−cmη
2

(4.54)

and
P {εI ≤ η and εI(z) ≥ 4η} ≤ c̃(1 + η−C)e−cmη

2

, (4.55)

where c̃ = c̃(λ,M, d), c = c(λ,M,CA, d) and C = C(λ, d).

The proof of Lemma 4.8 is rather different from the counterpart in [2] for the case of
piecewise constants. It is based among other things on the concentration result given in
Theorem 4.3, see also [13, Theorem 11.2].

5 Some Perspectives and Open Problems

We mention next two directions for improving the above results.

5.1 Proving probability results for piecewise polynomial approx-

imation

We have seen that when an interval I is good in the sense of (4.17), we are able to meet our
goal of directly estimating the performance of the empirical algorithm on I in probability.
We want to show that in the case that I is not good, it is possible to find in I a good
interval J and use this to construct an estimator which performs well in probability. We
shall confine the discussion in what follows to the case X = [0, 1], K = 1 and M = 1.
As a possible modification of estimators considered so far we shall consider the following
two-step procedure: (i) Given I, find J ⊆ I that is good in the sense of (4.17) for some
fixed bound M ′. (ii) Then construct an estimator based on samples contained only in J .
More precisely, let

fI,z := TM(f̃J,z), f̃J,z := argmin
g∈ΠK

1

m

m∑

i=1

(g(xi)− yi)
2χJ . (5.1)

Let us first point out how it is possible to find a good interval J inside I, at least on
a theoretical level. For any interval J , let

ρJ :=

∫

X

χJ(x)dρX , xJ :=

∫

X

xχJdρX , ξJ :=
xJ

ρJ
. (5.2)

Given I, we are going to create now a nested sequence of interval J0 = I ⊃ J1 . . . ⊃ Jk . . ..
In the case I is good, this sequence consists of only the one interval J0 = I. Given that
Jk is already defined, if Jk is good we terminate the sequence. If Jk is not good, we let
Jk+1 := J̄k+1 ∩ Jk where J̄k+1 = Jk ∩ [ξJk − |Jk|/2, ξJk + |Jk|/2] is the interval centered
at ξJk with length |Jk|/2. In going further, we define J

′
k := Jk \ Jk+1. Now either this

sequence terminates in a good interval Jk or else I = {x0} ∪ J ′1 ∪ J
′
2 · · · where x0 is some

point from I. In the latter case, we define k :=∞.
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We define fI,z by (5.1) for the good interval we have extracted. To analyze the perfor-
mance of fI,z, we first establish a bound for the measure of ∪kj=1J

′
j, i.e. of the complement

of the good interval. To do this we introduce some notation. For any two intervals L ⊂ K,
we shall use the notation

EK(L) := ‖fρ − pK‖L2(L,ρX) (5.3)

which is the error in approximating fρ by pK on the interval L.

Lemma 5.1 For each 1 ≤ j < k, we have

ρX(J
′
j) ≤ (M

′ − 1)−2(EJj(Jj)
2 − EJj+1(Jj+1)

2) (5.4)

Proof: Since Jj is not good, we have |pJj(x)| ≥ M ′, x ∈ J ′j. Hence, |fρ(x) − pJj(x)| ≥
M ′ − 1 on this interval. If we square this and integrate, we get that

EJj(Jj)
2 − EJj+1(Jj+1)

2 ≥ EJj(Jj)
2 − EJj(Jj+1)

2 = EJj(J
′
j)
2 ≥ (M ′ − 1)2ρX(J

′
j) (5.5)

which gives (5.4). 2

Lemma 5.2 If J = Jk ⊆ I is good, then

ρX(I \ J) ≤
(
M ′ − 1

)−2
‖fρ − pI‖

2
L2(I,ρX)

.

Proof: We have by definition

I = Jk ∪ J
′
k−1 ∪ · · · ∪ J

′
0, ρX(I \ Jk) =

k−1∑

j=0

ρX(J
′
j).

We infer from Lemma 5.1 that for J = Jk

ρX(I \ J) ≤ (M ′ − 1)−2
k−1∑

j=0

(EJj(Jj)
2 − EJj+1(Jj+1)

2)

≤ (M ′ − 1)−2EJ0(J0)
2 = (M ′ − 1)−2‖fρ − pI‖

2. (5.6)

This completes the proof. 2

With these estimates in hand, we have

‖fρ − fI,z‖
2
L2(I,ρX)

= ‖fρ − T1(f̃J,z)‖
2
L2(J,ρX)

+ ‖fρ − T1(f̃J,z)‖
2
L2(I\J,ρX)

≤ ‖fρ − T1(f̃J,z)‖
2
L2(J,ρX)

+ 4ρX(I \ J)

≤ ‖fρ − T1(f̃J,z)‖
2
L2(J,ρX)

+ 4(M ′ − 1)−2‖fρ − fI‖
2
L2(I,ρX)

≤ (‖fρ − T1(f̃J,z)‖L2(J,ρX) + 2(M
′ − 1)−1‖fρ − fI‖L2(I,ρX))

2

Hence, whenever

η ≥ max {4(M ′ − 1)−1‖fρ − pI‖L2(I,ρX), 64‖fρ − pJ(fρ)‖L2(J,ρX)},
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we can invoke Theorem 4.2, (4.18), to conclude that

P{‖fρ − fI,z‖L2(I,ρX) ≥ η} ≤ P{‖fρ − T1(f̃J,z)‖L2(J,ρX) ≥ η/2} ≤ c12
c2η−c2e−cmη

2/4, (5.7)

which indeed provides a concentration estimate of the desired kind for the modified esti-
mator.
The above procedure, while interesting, is not an empirical algorithm. To bring this

approach to completion, we would need a numerical procedure to identify the good interval
J in I. The natural approach of replacing the above arguments with empirical quantities
will fail due to the difficulty of estimating the quantity ξI with sufficiently high probability,
regardless of the interval being good or not. Therefore it is not clear whether this line
will ultimately be successful.

5.2 Improved Probability Results for Adaptive Piecewise Con-

stant Approximation

We have shown that it is possible to give near optimal estimates in probability for the
performance of piecewise constant adaptive algorithms on certain approximation classes.
We want now to show that it is possible to improve these results and obtain results which
are near optimal on individual regression functions rather than only classes.
The tool for obtaining these improved results is the idea of near-best adaptive tree

approximation as studied in [5] for the deterministic case. This type of approximation
studies all possible partitions that can be described by trees of the form we have been
discussing. Given the data z, we use the empirical local error estimators eI(z) defined in
(4.7). In the case of piecewise constant approximation (as we are now discussing), the
truncation operator TM is not needed. For a partition Λ associated to such a tree we
denote by EΛ :=

∑
I∈Λ e

2
I the error of piecewise approximation by piecewise constants for

this partition and by EΛ,z the corresponding empirical error. The local error eI(z) satisfy
∑

I′∈C(I)

eI′(z)
2 ≤ e2I(a) (5.8)

which is the subadditivity property needed to apply the results of [5].
Applying the algorithm of [5] to the empirical data yields a partition Λ∗ := Λ?(z)

which satisfies
EΛ?,z ≤ C1 inf

#Λ≤C2#Λ?
EΛ,z , (5.9)

where the constants C1 and C2 are absolute. One can now prove that the piecewise
constant function built on the partition Λ∗ approximates fρ well in probability. Indeed,
suppose that at a certain stage of this refinement we receive a partition Λ?. Then for any
partition Λ with #Λ ≤ C2N we have

EΛ?,z ≤ C1EΛ,z . (5.10)

We denote by η2 := EΛ?,z and N = #Λ? and consider the random variables rI :=
(y − qI)2χI(x) and their empirical realizations

rI,z :=
1

m

m∑

i=1

(yi − qI)
2χI(xi) =

1

m

m∑

i=1

[
(yi − qI,z)

2 + (qI − qI,z)
2
]
χI(xi)
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= eI,z + (qI − qI,z)2ρI,z, (5.11)

where as usual ρI,z :=
1

m

m∑

i=1

χI(xi). We use the above relation and concentration of

measure inequalities in a similar way as in [2] to establish the following estimate for any
partition Λ with #(Λ) ≤ C2N .

P
{
|EΛ − EΛ,z| >

η2

2C1

}
≤ 4Ne−

cmη2

NM2 (5.12)

Thus, from the computable quantity EΛ,z we get an estimate for the true error (namely,

EΛ ≤ EΛ,z +
η2

2C1
which holds with high probability and we have a computable bound

for this probability (the right side of (5.12)). The estimate (5.12) for Λ? has a slightly
different flavor than our previous results. As we run the algorithm thereby enlarging the
tree, the estimate we have for the error will decrease but the bound for the probability of
failure of this estimate will increase. The user can decide when to terminate the algorithm
and accept the given bounds.
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