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Abstract. It is shown how an arbitrary set of points in the hypercube can

be Latinized, i.e., can be transformed into a point set that has the Latin hy-

percube property. The effect of Latinization on the star discrepancy and other

uniformity measures of a point set is analyzed. For a few selected but represen-

tative point sampling methods, evidence is provided to show that Latinization

lowers the star discrepancy measure. A novel point sampling method is pre-

sented based on centroidal Voronoi tessellations of the hypercube. These point

sets have excellent volumetric distributions, but have poor star discrepancies.

Evidence is given that the Latinization of CVT points sets greatly lowers their

star discrepancy measure but still preserves superior volumetric uniformity. As

a result, means for determining improved Latin hypercube point samples are

given.

Key Words. Latin hypercube sampling, quasi-Monte Carlo sampling, cen-

troidal Voronoi tessellations, uniform sampling

1. Introduction

Point sampling in regions in R
d is useful in many areas of scientific computing

and, depending on the specific application, it comes in different forms in terms of
the dimensionality of the region and the cardinality and distribution of the samples.
One example is the numerical integration of high-dimensional functions in hyper-
cubes. In such applications, quadrature points must be chosen from a possibly
very high-dimensional space in such a way that the quadrature error asymptoti-
cally converges to zero at a rate which is independent or weakly dependent on the
dimension. Since usually no prior assumption is made about the smoothness or
variation of the integrands, the points are sampled uniformly from the hypercube.
Another example is mesh generation for which the points are typically chosen to
belong to a low-dimensional complicated domain. The points are used to define a
discrete approximant of some function which is hoped to converge to the true func-
tion as the number of points goes to infinity. One also hopes that the points are
distributed in such a way so that optimal convergence rates are obtained, the dis-
crete problem is well conditioned, and as few points as possible are used to achieve
a desired accuracy. This often results in the need for nonuniform point distribu-
tions in general regions. A third example is in the design of experiments of both
the laboratory and computational type. Here, parameters are chosen to define the
experimental setup. Since experiments of either type may be expensive, and since
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often many parameters serve to define an experiment, one would like to sample as
few points as possible from a possibly high-dimensional parameter space. In addi-
tion, with the absence of any prior information about the system, one may need to
sample uniformly in the parameter volume. Hence, this is a case of sparse, uniform
sampling in high dimensions. A particular design of experiment problem arises in
the model reduction of complex systems, where parameters are chosen to generate
high-fidelity simulations called snapshots from which the reduced-order model is
derived. The choice of snapshots is crucial to the accuracy of reduced-order models
since those models can only capture the information contained in the snapshots.
Since the high-fidelity simulation is expensive, one would like to sample parameter
space as sparsely as possible.

In this paper, we focus on uniform sampling in the hypercube, possibly in high
dimensions. Because the sense of “uniformity” depends on the application, we
consider two strategies for defining uniformly distributed point sets. One strategy
is aimed at producing points sets whose projections onto lower-dimensional faces
of the hypercube are themselves well distributed. Discrepancy measures are usu-
ally used to evaluate the quality of such point sets. There have been many ways
proposed for defining low-discrepancy points sets in hypercubes [12]. Here, in an
attempt to improve the discrepancy measure of arbitrary point sets, we introduce
a simple procedure that Latinizes any point set, i.e., that converts a point set into
another set of “nearby” points that has the Latin hypercube sampling property.

The second strategy for defining uniformly distributed point sets is aimed at
producing point sets that are well-distributed volumetrically in the hypercube. We
introduce a specific strategy for accomplishing this goal that is based on minimiz-
ing the variance or second moment of tessellations associated with the point set.
We refer to the resulting point sets as CVT (for centroidal Voronoi tessellation)
point sets. There are several measures that can be used to evaluate the quality
of volumetrically distributed point sets; here, we use several measures based on
the Voronoi diagrams associated with point sets. CVT point sets, although supe-
rior with respect to volumetric measures of quality, have poor discrepancies. The
Latinization of CVT point sets significantly improves their associated discrepancy
measures.

Through some computational examples, we test the quality of representative
methods for defining point sets and compare them to Latinized and CVT point
sets. The comparisons are made with respect to several quality measures.

2. Quality measures for point sets

We use two types of measures to determine the quality of point sets in a hyper-
cube. The first examines the uniformity of the set projected onto lower-dimensional
faces while the second only looks at the volumetric uniformity of the points. Through-
out, H = [0, 1]d will denote the d-dimensional hypercube.

2.1. The star discrepancy. The star discrepancy [12, 13] of a point-set Z =
{zi}

N
i=1 ⊂ H is given by

D∗(Z) = sup
B0⊂H

∣

∣

∣

#(Z ∩ B0)

N
− µ(B0)

∣

∣

∣
,

where B0 = [0, v1] × · · · × [0, vd] for some v1, . . . , vd ∈ [0, 1].
The star-discrepancy measures how well the point set can approximate the vol-

ume of axis-parallel boxes. This measure turns out to play an important role in
high-dimensional integration. The Koksma-Hlawka inequality [12, 13] states that
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if f : H 7→ R has a finite total variation V(f), then the following error bound
holds for the simple sampling-and-averaging quadrature rule based on a point set
Z = {zi}

N
i=1:

(1)

∣

∣

∣

∣

∫

[0,1]d
f(x) dx −

1

N

N
∑

i=1

f(zi)

∣

∣

∣

∣

≤ V(f)D∗(Z).

2.2. Uniformity measures based on Voronoi tessellations. The Voronoi di-
agram corresponding to a given set of points can be used to define several measures
of the uniformity of the point set. Here, we recall four of these measures. We
note that these are volumetric measures of uniformity in the sense that they view
point sets as objects in R

d and do not especially measure the uniformity of point
sets viewed in lower dimensions. Detailed descriptions of these and other measures
can be found in [2, 3, 5, 6]. Here, we merely note that these measures attempt to
assess one or more of the hallmarks of volumetrically uniform point sets, namely,
equal spacing between points, good coverage of the hypercube (e.g., no large regions
having relatively few points), and some degree of isotropy.

Let ‖ · ‖ denote the Euclidean distance in R
d and µ the Lebesgue measure on H.

A tessellation of H is a set {Vi}
N
i=1 having the following properties: for i = 1, . . . , N ,

Vi ⊂ H and is closed, ∪N
i=1Vi = H, and µ(Vi ∩ Vj) = 0 whenever i 6= j. A Voronoi

tessellation of H corresponding to a given set {zi}
N
i=1 of N points belonging to H

is given by, for i = 1, . . . , N ,

Vi = {x ∈ H : ‖x − zi‖ ≤ ‖x − zj‖ for j = 1, . . . , N , j 6= i } .

Such a set {Vi}
N
i=1 is also referred to as a Voronoi diagram of H, the members of

the set of points {zi}
N
i=1 are referred to as the generators of the Voronoi tessellation,

and each Vi is referred to as the Voronoi region or Voronoi cell corresponding to zi.
For each Voronoi region Vi, let µ(Vi) denote its volume, let hi denote the max-

imum distance between its generator zi and the points in Vi, and let χi denote
the minimum distance from its generator zi to any of the other generators, i.e., for
i = 1, . . . , N ,

µ(Vi) =

∫

Vi

dx, hi = max
x∈Vi

‖x − zi‖, and χi = min
j=1,...,N, j 6=i

‖zi − zj‖.

Also, for each Voronoi region Vi, let xi denote its center of mass and let Mi denote
its second-moment tensor with respect to its center of mass, i.e.,

xi =
1

µ(Vi)

∫

Vi

x dx and Mi =
1

µ(Vi)

∫

Vi

(x − zi)(x − zi)
T dx.

Let Ti = trace(Mi) and T = 1
N

∑N
i=1 Ti. Also, let Di denote the determinant of

the deviatoric tensor associated with Vi, i.e., Di = det(Mi −
1
N

Ti). Then, the four
volumetric uniformity measures we will use are defined by

(2)







































h = max
i=1,...,N

hi

χ = max
i=1,...,N

(

2
hi

χi

)

τ = max
i=1,...,N

|Ti − T |

γ = max
i=1,...,N

|Di|.

In each case, the smaller the value of the uniformity measure, the more uniform is
the point set; again, see [2, 3, 5, 6] for details.
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3. CVT point sets

In Section 2.2, we defined Voronoi tessellations {Vi}
N
i=1 of a given point set

{zi}
N
i=1 in the hypercube H = [0, 1]d. The centers of mass or centroids of given a

tessellation {Wi}
N
i=1 of H are the points {z∗i }

N
i=1 such that, for i = 1, . . . , N ,

z∗i =
1

|Wi|

∫

Wi

x dx ,

where |Wi| denotes the measure of Wi. Note that if {Vi}
N
i=1 is a Voronoi tessellation

corresponding to a given set of points {zi}
N
i=1 and if, for i = 1, . . . , N , z∗i is the

centroid of the Voronoi region Vi, then, in general, z∗i 6= zi for i = 1, . . . , N , i.e., the
generating points of a Voronoi tessellation are, in general, not the centers of mass
of the corresponding Voronoi regions; see the left image in Figure 1.

Given any set {wi}
N
i=1 of N points in H and given any tessellation {Wi}

N
i=1 of

H, we define, for i = 1, . . . , N , the second moment of each pair {wi,Wi} by

(3) Ei(wi,Wi) =

∫

Wi

‖x − wi‖
2 dx .

Note that, at this point, we do not assume any relation between a point wi and
its associated volume Wi; in particular, we do not presume that wi ∈ Wi or that
{wi,Wi}

N
i=1 defines a Voronoi tessellation of H. The average of the second moments

is then given by

(4) E
(

{wi}
N
i=1, {Wi}

N
i=1

)

=
1

N

N
∑

i=1

∫

Wi

‖x − wi‖
2 dx .

We then pose the following problem: among all possible sets of N points belonging

to H and all possible tessellations of H into N subregions, find a set of points and

a tessellation that minimizes E(·, ·). It is known that solutions of this problem,
i.e., minimizers of E(·, ·), are special Voronoi tessellations for which the generating

points are also the centroids of the corresponding Voronoi regions [4]. We call such
a tessellation a centroidal Voronoi tessellation, or, for short, a CVT. The functional
E(·, ·) is referred to as the “CVT-energy.” See the right image of Figure 1 for an
example of a CVT.

Figure 1. Left: ten randomly chosen points in a square (the dots),
the correspoding Voronoi tessellation of the square (the polygons),
and the centers of mass of the Voronoi regions (the circles). Right:

a ten point CVT of the square; the circles are simultaneously the

generators of the Voronoi tessellation and the centers of mass of

the Voronoi regions.
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The special nature of CVT point sets require that they be constructed. In low
dimensions, i.e., two or at most three, they can be constructed by Lloyd’s method
[9] which is the obvious iteration consisting of first guessing the locations of the
generators, then computing the Voronoi diagram for those points, then computing
the centers of mass of the resulting Voronoi cells, and them using those centers
of mass as the new guesses for locations of the generators. See [4, 9] for details.
In higher dimensions, MacQueen’s method [10] provides a sampling and averaging
technique for constructing CVT’s that does not require the construction of Voronoi
diagrams or the determination of centers of mass of polyhedral domains. See [4, 10]
for details. MacQueen’s method is very slow to converge; more efficient probabilistic
algorithms, i.e., algorithms based on sampling, have been developed, including some
that are eminently parallelizable; see [8].

What does a CVT look like? Without any other constraints, it is easy to see
that the optimal shape that minimizes the second moment (3) for a fixed volume is
the ball. This is easy to see as follows. Let B denote a unit ball, W any measurable
set of equal volume, and w an arbitrary point belonging to W . We can take w = 0
by translation. We have that µ(W − B ∩ W ) = µ(B − B ∩ W ) so that

∫

W−B∩W

‖x‖2 dx ≥

∫

W−B∩W

dx = µ(W − B ∩ W )

= µ(B − B ∩ W ) =

∫

B−B∩W

dx ≥

∫

B−B∩W

‖x‖2 dx .

Therefore,
∫

B

‖x‖2 dx =

∫

B∩W

‖x‖2 +

∫

B−B∩W

‖x‖2 dx

≤

∫

B∩W

‖x‖2 +

∫

W−B∩W

‖x‖2 dx =

∫

W

‖x‖2 dx .

Obviously, balls cannot tessellate H so that a CVT cannot consist of balls. How-
ever, intuitively speaking, a CVT would have the Voronoi regions be as close to
balls as possible while tessellating H by hyperplanes. In the plane, it has in fact
been proved that the minimizer of the CVT-energy is a hexagonal lattice, hexagons
being the closest shape to a disc which can tile the plane. In fact, Gersho’s conjec-
ture of vector-quantization [7] states that the minimizer of the CVT-energy results
in Voronoi regions having equal volumes and shapes that are rotated or translated
copies of the same shape; this conjecture has been proven valid in R

2 [11]. Bound-
aries place additional constraints on the minimizers of the CVT-energy so that a
regular lattice cannot be achieved. However, in the sense that the CVT-energy is
minimized, CVT tessellations come as close as possible to a regular lattice. See
Figure 2 for a further example of a CVT in R

2.
Following [7], under the assumption that Gersho’s conjecture holds, we may

estimate the CVT-energy corresponding to the optimal CVT points as a function
of dimension. For each Voronoi region Vj , we define the normalized moment as

Mj =
1

|Vj |
2+d

d

∫

Vj

‖x − zj‖
2 dx .

We can see that Mj is a translation, rotation, and scale invariant quantity when
zj is also appropriately transformed. Under Gersho’s conjecture, all the Mj ’s and
|Vj |’s are essentially the same, i.e., for i = 1, . . . , N , Mj ≈ M for some M and
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Figure 2. A 256-point CVT of the square. Away from the bound-

ary, the Voronoi regions approximate a regular hexagonal tiling.

|Vj | ≈ 1/N . Then,

(5)

E
(

{zi}
N
i=1, {Vi}

N
i=1

)

=
N

∑

j=1

∫

Vj

‖x − zj‖
2 dx =

N
∑

j=1

|Vj |
2+d

d

∫

Vj

‖x − zj‖
2

|Vj |
2+d

d

dx

=

N
∑

j=1

|Vj |
2+d

d Mj ≈
1

N
2
d

M .

It is interesting to note that the CVT-energy is strongly dependent on the dimension
d. In fact, the bound (5) is relevant because it may be applied to obtain an error
bound for a quadrature rule using CVT point sets as quadrature points. The
following result is shown in [14]. We consider the following quadrature rule for
approximating the integral of a function f ∈ C2(H):

(6)

∫

H

f(x) dx ≈

N
∑

i=1

f(zi)µ(Vi) .

By Taylor’s theorem, we obtain
∫

H

f(x) dx =

N
∑

i=1

∫

Vi

[

f(zi) + ∇f(zi) · (x − zi) + (x − zi) ·
(

∇2f(ηi)(x − zi)
)

]

dx

=
N

∑

i=1

[

f(zi)|Vi| + ∇f(zi) ·

∫

Vi

(x − zi) dx

+

∫

Vi

(x − zi) ·
(

∇2f(ηi)(x − zi)
)

dx
]

.

Since zi is the centroid of the corresponding Voronoi region Vi, the first-order term
vanishes. Therefore,

(7)

∣

∣

∣

∣

∣

∫

H

f(x) dx −

N
∑

i=1

|Vi|f(zi)

∣

∣

∣

∣

∣

≤ ‖f‖C2(H)

N
∑

i=1

∫

Vj

‖x − zi‖
2 dx

= ‖f‖C2(H)E
(

{zi}
N
i=1, {Vi}

N
i=1

)

.
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Thus, if Gersho’s conjecture holds, we see that the quadrature error is bounded
from above by a term of O( 1

N2/d ). Note that if hi denotes the diameter of the
Voronoi region Vi, and if h = maxi=1,...,N hi, then (7) implies that the error for
the quadrature rule (6) is of O(h2). One should note the difference between the
sampling and averaging quadrature rule of (1) and the volume-weighted quadrature
rule of (6).

4. Latinization of point sets

A Latin-hypercube sample (LHS) can be defined as follows. Let H = [0, 1]d

denote the d-dimensional hypercube. For i = 1, . . . , N and j = 1 . . . , d, let zi(j)
denote the j-th coordinate of the i-th point zi. Let Pj , j = 1, . . . , d, denote d
random permutations of the set {1, . . . , N} and, for i = 1, . . . , N , let Pj(i) denote
the i-th element of Pj . Then, we choose

(8) zi(j) =
Pj(i) − Uji

N
for i = 1, . . . , N and j = 1 . . . , d,

where Uij denotes a uniform random variable taking values on the unit interval.
As a result, each slab of width 1

N
along all coordinate directions contains exactly

one point; we refer to this property as the LHS property. For example, in two-
dimensions, we subdivide the unit square into an N by N array of bins, i.e, small
squares of size 1

N
by 1

N
. Then, we sample N points in such a way that each row

and column of the array contains exactly one point. If, instead of (8), we use

zi(j) =
Pj(i) − .5

N
for i = 1, . . . , N and j = 1 . . . , d,

we obtain a centered LHS for which all the points are located at the centers of their
bins.

Any pointset can be transformed into an LHS by a simple procedure we call
Latinization. Suppose we are given a point set Z = {zi}

N
i=1. For any integer k such

that 1 ≤ k ≤ d, we define:

• the k-th reordering of Z to be the point set {Rkzi}
N
i=1 obtained by reordering

Z according to the value of the k-th coordinates of the zi’s; ties can be
arbitrarily broken;

• the k-th shift of Z to be the point set {Skzi}
N
i=1 such that

(9) Skzi(j) =







zi(j) if j 6= k

i − Uji

N
if j = k,

where again Uij denotes a uniform random variable taking values on the
unit interval.

Then, starting with any point set Z = {zi}
N
i=1, the corresponding Latinized point

set {Lzi}
N
i=1 is given by

Lzi =
(

Πd
k=1(SkRk)

)

zi for i = 1, . . . , N.

By construction, the Latinized point set is an LHS. The k-th shift moves the re-
ordered points parallel to the k-th axis while preserving the k-th coordinate ordering
of the points. Latinization is the result of applying the shift to all coordinates.

Clearly, we could obtain a centered LHS from any point set by replacing Uji in
(9) by .5. For such a centered Latinized strategy, we define the k-th shift energy of
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a point set Z = {zi}
N
i=1 with respect to k-th shift to be

ESk(Z) = sup
i=1,...,N

∥

∥

(

Rkzi

)

(k) −
(

SkRkzi

)

(k)
∥

∥ = sup
i=1,...,N

∥

∥

∥

(

Rkzi

)

(k) −
1

N
(i − .5)

∥

∥

∥
.

The k-th shift energy is a measure of how close the reordering of the point set Z is
to a point set that is completely uniform with respect to the k-th axis.

4.1. Discrepancies of Latinized point sets. A question that naturally arises
is: how much does Latinization distort the star discrepancy of the original point
set? We prove that under certain hypotheses, the star-discrepancy of the Latinized
point set has the same asymptotic bound as that of the original point set. To do
so, we need the following preliminary result.

Lemma 4.1. Let Z = {zi}
N
i=1 denote a point set in H. If D∗(Z) ≤ f(N), then

ES1(Z) ≤ f(N).

Proof. Let B = [0, si] × [0, 1] × . . . × [0, 1]; then,

|si − s′i| = |si −
i

N
| =

∣

∣

∣
µ(B) −

#(B ∩ Z)

N

∣

∣

∣
≤ f(N).

This is exactly the discrepancy of the box B which we know is at most f(N) from
the hypothesis. �

Theorem 4.2. If D∗(Z) ≤ f(N) and f(N) ≥ C
N

for some C > 0, then D(S1(Z)) ≤

(2 + 1
C

)f(N).

Proof. Let B0 = [0, c1] × . . . × [0, cd]. Let A = c2 · · · cd. Let k be the largest
index such that s′k ≤ c0. Let B1 = [0, sk] × [0, c2] × . . . × [0, cd]. Note that
B1 ∩ Z and B0 ∩ S1(Z) contain the same number of points, since if vj is in B1,

vj(1) = sj ≤ sk, so that j ≤ k. This implies that S1vj(1) = j
N

≤ k
N

= s′k. Also,
vj(k) = S1vj(k) ∈ [0, ck] for all k 6= 1. Thus, S1vj ∈ B0. On the other hand, if
S1vj ∈ B0, by the maximality of k, S1vj(1) = s′j ≤ s′k. So j ≤ k and this implies
sj ≤ sk, so that vj ∈ B1. Thus, vj ∈ B1 if and only if S1vj ∈ B0. Also, because of
how k was chosen, |c1 − s′k| ≤

1
N

. Also, |sk − s′k| ≤ f(N) by Lemma 4.1. Therefore,

|c1 − sk| ≤ |c1 − s′k + s′k − sk| ≤ |c1 − s′k| + |s′k − sk| ≤ f(N) +
1

N
.

Therefore,
∣

∣

∣

∣

#(B0 ∩ S1(Z))

N
− µ(B0)

∣

∣

∣

∣

=

∣

∣

∣

∣

#(B1 ∩ Z)

N
− Ac1

∣

∣

∣

∣

=

∣

∣

∣

∣

#(B1 ∩ Z)

N
− Ask + Ask − Ac1

∣

∣

∣

∣

≤

∣

∣

∣

∣

#(B1 ∩ Z)

N
− Ask

∣

∣

∣

∣

+ A |sk − c1|

≤ f(N) + A(f(N) +
1

N
) ≤

(

2 +
1

C

)

f(N).

This is true for any box B0; therefore, D∗(S1(Z)) ≤ (2 + 1
C

)f(N). �

Thus, we see that the discrepancy of the kth shift is of the same order as the
original point set, given that the original point set has discrepancy greater than C

N

for some C. A simple corollary of the above is that a point set after Latinization
has the discrepancy bounded by O(f(N)), where the constant in the big-O notation
depends on d.
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4.2. CVT energy of Latinized point sets. We next ask what happens to the
CVT energy of a point set Z = {zi}

N
i=1 after it is Latinized? At this point, we need

not assume that the point set is a CVT point set.
Suppose we start with a set of points Z = {zi}

N
i=1 in H and a tessellation

{V1, ..., VN} of H such that zi ∈ Vi and the following properties hold:

(1) µ(Vi) ∼ 1
N

in the sense that there exists 0 ≤ γ < 1 such that for all

i = 1, . . . , N , µ(Vi) ∈ [((1 + γ)N)−1, ((1 − γ)N)−1];
(2) for given R > 0, |x(j) − zi(j)| ≤ R for all x ∈ Vi and j ≤ d.

The first property defines the notion of a quasi-uniform tessellation of H.
Then, we can obtain the following bound on the shift energy of the pointset. In

the following lemma, we treat the first axis. The other axes follows in the same
way. Hence, we let si = zi(1) and s′i = (S1R1z)i(1) = i

N
.

Proposition 4.3. Let the pointset Z generate a Voronoi diagram which is a quasi-

uniform partition in the sense that the above two requirements are met. Then,

ES1(P ) ≤ R + γ.

Proof. Let Hr = {v ∈ H : (v − re1) · e1 ≤ 0}; clearly, Hr is the subset of H
consisting of those points with a first coordinate less than or equal to r. Fix a
k ∈ {1 . . . N} and let A = ∪k

i=1Vi, rh = supx∈A x(1), and rl = infx∈Ac x(1). Then,

A ⊂ Hrh
and int(Hrl

) ⊂ A. Since µ(A) ∼ k
N

, we have

(1 − γ)µ(Hrl
) ≤

k

N
≤ (1 + γ)µ(Hrh

).

But µ(Hr) = r so we have

(1 − γ)rl ≤
k

N
≤ (1 + γ)rh.

Suppose first that k
N

≥ sk. Since A is closed, there exists x ∈ A such that
x(1) = rh. Then, x ∈ Vp for some p ≤ k so sp ≤ sk. Therefore,

0 ≤
k

N
− sk ≤ (1 + γ)rh − sk ≤ (1 + γ)x(1) − sp ≤ R + γ.

Hence, |s′k − sk| ≤ R + γ. On the other hand, if k
N

< sk, let x ∈ ∪N
i=k+1Vi such

that x(1) = rl. Then, x ∈ Vp such that p > k so sp > sk. Therefore,

0 ≤ sk −
k

N
≤ sk − (1 − γ)rl ≤ sp − (1 − γ)x(1) ≤ R + γ

so that in this case we also have that |s′k − sk| ≤ R + γ. �

We can now roughly bound the change in CVT energy due to a shift if the
neighbors of each Voronoi region do not change after the shift. Let Jk be set of
indices associated with the neighboring Voronoi regions of Vk. Let δk be such that
zk+δk = S1R1zk. Let Z ′ and {V ′

k}
N
k=1 respectively denote the point set and Voronoi

regions after the shift.
Note that due to the fact that Vk = (Vk ∩ V ′

k) ∪
(

∪j∈Jk
(Vk ∩ V ′

j )
)

and V ′
k =

(Vk ∩ V ′
k) ∪

(

∪j∈Jk
(V ′

k ∩ Vj)
)

,

|E(Z ′) − E(Z)| =
1

N

N
∑

k=1

[
∫

Vk∩V ′

k

‖zk + δk − x‖2 − ‖zk − x‖2 dx

+
∑

j∈Jk

(
∫

V ′

k∩Vj

‖zk + δk − x‖2 dx +

∫

Vk∩V ′

j

‖zk − x‖2 dx

)]

.
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Each of the three terms can be bounded as follows:
∫

Vk∩V ′

k

‖zk + δk − x‖2 − ‖zk − x‖2 dx =

∫

Vk∩V ′

k

2〈zk − x +
1

2
δk, δk〉

≤ µ(Vk ∩ V ′
k)2(R + γ)2 ≤ C1

(R + γ)2

N
,

∑

j∈Jk

∫

V ′

k∩Vj

‖zk + δk − x‖2 dx ≤
∑

j∈Jk

µ(V ′
k ∩ Vj)4(R + γ)2 ≤ C2|Jk|

(R + γ)2

N
,

and
∑

j∈Jk

∫

Vk∩V ′

j

‖zk − x‖2 dx ≤
∑

j∈Jk

µ(V ′
j ∩ Vk)4(R + γ)2 ≤ C3|Jk|

(R + γ)2

N
.

Therefore, |E(Z) − E(Z ′)| ≤ C (R+γ)2

N
.

Note that the CVT energy of a uniform partition of H is bounded by R2

N
; there-

fore, the above bound indicates that a shift changes the CVT energy by the same
order as the CVT energy of the original set.

5. Numerical experiments and conclusions

Five methods are used to sample 100 and 1000 points in the two, three, and
seven-dimensional hypercube; the sampling methods used are centroidal Voronoi
tessellation (CVT), Halton (HAL), Hammersley (HAM), Latin hypercube (LHS),
and (IHS) which is the improvement on Latin hypercube described in [1]. Latinized
versions (LCVT, LHAL, and LHAM) of the first three types of point sets are also
determined.

The star discrepancy of each point set was approximately determined by the
method of [15]; the results in seven dimensions are less accurate than the corre-
sponding results in two and three dimensions. For each point set, approximations
to the four Voronoi diagram-based measures described in Section 2.2 and the CVT
energy (see (4)) were also determined using intense sampling methods to evaluate
the integrals. Again, the results in seven dimensions are less accurate than the
corresponding results in two and three dimensions.

We note that some of the results, especially in seven dimensions, are very sen-
sitive to initialization. For example, the construction of CVT points sets require
choosing initial positions for the points; an iterative process is then used to move
the points to the CVT locations. The results of that process are sometimes sensitive
to the initial position of the points.

The results obtained are given in Tables 1–6 (ignoring, for the moment, the last
two columns). Of course, we present a very limited number of test runs so that
drawing definitive conclusions with regard to the relative merits of the different
point sets is not possible. However, the inferences listed below which can be drawn
from the tables are also consistent with the results of other tests we have performed.

The star discrepancy

1. Latinization improves the star discrepancy of every CVT, Halton, and Ham-
mersley point set.

2. Latinized Hammersley point sets consistently have the smallest star discrep-
ancy.

3. CVT point sets have the largest star discrepancy, but the Latinization of
CVT point sets greatly reduces that discrepancy to a value comparable to
that for some of the other point sets.
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The four Voronoi diagram-based measures

1. CVT point sets are consistently the best according to these measures.
2. LHS point sets are consistently the worst; IHS point sets are much better.
3. Latinization raises the measures for the CVT point sets, but LCVT point

sets are still consistently better than any of the other points sets.
4. Latinization mostly but not always raises these measures for the Halton and

Hammersley point sets.
5. Other than the CVT and LCVT point sets that have lower values and the

LHS point sets that have higher values, the other points sets have similar
values.

The CVT energy

1. Naturally, CVT point sets have the lowest value of the CVT energy since
they are, by design, minimizers of that energy.

2. A Latinized CVT point set has higher CVT energy than that of its parent
CVT point set, but generally lower energy than that of the other point
sets.

3. Latinization seems to have little effect on the CVT energy of Halton and
Hammersley point sets.

Summary

1. If the star discrepancy measure is of most importance, then the Latinized
Hammersley point sets seem to be preferred.

2. If the four Voronoi diagram-based measures are of most importance, then
the CVT point sets seem to be preferred.

3. If both measures are of interest, Latinized CVT point sets seem to provide
the best compromise.

4. LHS and IHS point sets are not competitive in either category.

These observations are reinforced by a visual inspection of the point sets in
two dimensions. The eye is a very good discerner of volumetric uniformity and
nonuniformity, i.e., it can easily detect disparities in the spacing between points,
the lack or presence of large areas that contain no points, and the isotropy or lack
thereof of the point distribution. For example, consider the top row of Figure 3
which, visually, is arranged, left to right, in increasing disorder but which also
is arranged according to increasing volumetric measures; see Table 1. From the
the second row, one also sees that Latinization has little effect on the Halton and
Hammersley points sets, but has a definite disordering effect on the CVT point
set. Finally, from the third row, one sees that the IHS point set determined by the
algorithm of [1] is a definite improvement over the Latin hypercube sampling point
set, but that both are considerably less volumetrically uniform than the CVT point
set.

The eye is not so good at picking out which point sets have smaller or larger star
discrepancy. One exception, perhaps, is the CVT point set which is depicted at the
top left of Figure 3. Not only does one see a lattice-like structure in the interior
of the square, but even more influential with respect to the star discrepancy, the
points are very well aligned along the sides of the square. This latter feature can
be useful in some setting, e.g., grid generation, but is disastrous with respect to the
star discrepancy since it results in very poor point distributions after the point set
is projected onto the sides of the square.
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The fact that the CVT point set “knows” so well where the boundary is located
can be counteracted by having it “ignore” the boundary, i.e., by constructing a
periodic (with respect to all coordinates) CVT. Now, the Voronoi cell corresponding
to a point near the boundary of the hypercube As is not cut off by that boundary,
but instead wraps around to the opposite (s − 1)-dimensional face. This is an
approach we are currently studying; some preliminary results seem promising; see
the last two columns of Tables 1–6 and the last row of Figure 3 which provide
the same information for periodic CVT points (CVTP) and their Latinizations
(LCVTP) as was given for the other point sets. In particular, we see that the
value of the star discrepancy of the CVTP points sets is much lower than that
for the CVT point sets. Also, the LCVTP point sets have lower value of the star
discrepancy than do the LHS and IHS points sets, and in this respect, they begin
to rival the Halton and Hammersley point sets. On the other hand, with respect
to most of the volumetric measures, the CVTP and LCVTP points sets seem to
be superior to the Halton, Hammersley, Latin hypercube sampling, and improved
LHS point sets and are only outdone by the CVT point sets.

Clearly more tests and theoretical studies need to be done, especially in higher
dimensions and/or for larger point sets. However, CVT and periodic CVT point
sampling seems to be useful in some settings and the Latinization of point sets such
as Hammersley seems to produce very much improved Latin hypercube samples.
Future work will also focus on the the effects of Latinization and on the relative
merits of the different sampling strategies when point sets are used for the different
purposes mentioned in the introduction.
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Measure cvt lcvt hal lhal ham lham lhs ihs cvtp lcvtp

D∗ × 102 8.89 2.74 5.05 2.91 3.80 2.78 6.06 3.71 5.86 3.65

h .072 .104 .125 .126 .140 .134 .165 .118 .109 .108
χ 1.56 7.19 5.18 5.87 3.91 4.19 15.7 4.51 2.17 2.46

τ × 103 .31 .59 1.64 1.18 1.20 1.13 2.83 1.14 .81 .78
γ × 107 .26 2.50 6.63 6.22 4.79 4.75 22.3 4.45 1.10 1.02

E × 103 1.64 1.84 2.22 2.25 1.96 1.96 3.03 1.97 1.73 1.81

Table 1. 100 points in two dimensions.

Measure cvt lcvt hal lhal ham lham lhs ihs cvtp lcvtp

D∗ × 103 31.1 1.5 7.29 5.64 4.81 3.71 19.2 8.87 16.3 8.42

h × 102 2.29 3.10 3.60 3.69 4.08 4.07 5.93 3.72 3.34 3.35
χ 1.52 3.59 7.31 7.82 11.4 13.0 45.1 4.82 2.42 2.35

τ × 104 .63 .67 1.21 1.18 1.34 1.35 4.06 1.28 .97 1.12
γ × 109 1.14 2.18 9.56 11.1 3.98 3.71 29.9 5.06 3.25 3.68

E × 103 .163 .171 .221 .221 .183 .184 .315 .182 .168 1.69

Table 2. 1000 points in two dimensions.

Measure cvt lcvt hal lhal ham lham lhs ihs cvtp lcvtp

D∗ × 102 24.3 6.95 6.76 5.89 6.43 4.98 9.18 6.83 1.5 6.02

h .200 .265 .312 .321 .269 .268 .350 .281 .281 .276
χ 1.94 15.2 9.64 9.69 8.00 7.33 13.7 5.29 2.53 2.85

τ × 103 1.40 4.58 5.57 5.37 6.11 5.24 1.6 5.57 4.67 4.16
γ × 108 .19 1.24 3.88 3.98 1.19 1.49 11.7 4.31 1.70 3.13

E × 102 1.14 1.37 1.55 1.55 1.41 1.41 1.83 1.41 1.31 1.31

Table 3. 100 points in three dimensions.
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Measure cvt lcvt hal lhal ham lham lhs ihs cvtp lcvtp

D∗ × 102 11.8 1.97 1.64 1.48 1.33 1.17 3.28 2.00 2.53 1.83

h .082 .114 .136 .136 .130 .129 .167 .129 .116 .123
χ 1.83 4.74 1.4 1.3 6.43 6.52 31.8 6.19 2.32 2.36

τ × 103 .63 1.43 1.49 1.63 1.28 1.24 3.00 1.63 1.83 2.02
γ × 1010 .38 6.43 5.22 6.93 2.25 2.99 17.0 3.59 2.99 2.60

E × 103 2.42 2.63 3.13 3.14 2.84 2.84 3.70 2.73 2.60 2.60

Table 4. 1000 points in three dimensions.

Measure cvt lcvt hal lhal ham lham lhs ihs cvtp lcvtp

D∗ .870 .250 .248 .203 .237 .200 .228 .234 .222 .210

h .718 .817 .956 .919 .863 .863 .908 .904 .964 .948
χ 2.63 5.18 4.05 4.03 4.69 4.73 6.56 4.05 3.26 3.23

τ × 102 .91 2.94 3.53 3.43 2.94 3.14 5.24 5.46 5.25 4.65
γ × 1014 .000108 1.79 6.15 6.36 1.8 11.3 14.3 17.8 2.26 1.89

E .156 .211 .212 .212 .206 .206 .215 .215 .203 .203

Table 5. 100 points in seven dimensions.

Measure cvt lcvt hal lhal ham lham lhs ihs cvtp lcvtp

D∗ .741 .173 .132 .128 .125 .120 .139 .139 .137 .133

h .552 .582 .600 .600 .587 .585 .622 .632 .569 .573
χ 2.80 4.41 5.85 5.86 4.36 4.34 7.55 3.78 2.77 2.74

τ × 102 1.23 2.64 2.84 2.70 4.69 4.69 3.16 3.39 3.03 2.68
γ × 1015 .012 .96 4.80 4.94 3.00 2.99 2.3 6.53 3.19 3.44
E × 102 7.86 9.50 9.80 9.81 9.83 9.83 1.1 9.87 9.38 9.36

Table 6. 1000 points in seven dimensions.
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Figure 3. 100 points in the square; top row: CVT, HAL, and

HAM; second row: LCVT, LHAL, and LHAM; third row: LHS

and IHS; bottom row: CVTP and LCVTP.
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