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ORIGINAL DISTORTED OLS AM-RR

Figure 9.3: An experiment on face reconstruction using robust regression techniques. Two face
images were taken and different occlusions were applied to them. Using the model described
in § 9.1, reconstruction was attempted using both, ordinary least squares (OLS) and robust
regression (AM-RR). It is clear that AM-RR achieves far superior reconstruction of the images
and is able to correctly figure out the locations of the occlusions. Images courtesy the Yale Face
Database B.

Face Recognition : In biometrics, a fundamental problem is to identify if a new face image

belongs to that of a registered individual or not.

Cast as a regression problem by trying to fit various features of the new image to

corresponding features of existing images of the individual in the registered database
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Assume that images are represented as n-dimensional feature vectors say, using simple
pixel-based features. Also assume that there already exist p images of the person in the

database.

Represent the new image x' - R"in terms of the database images X = [x,, . . ., x,]-e R™ of
that person. One solution is to perform linear interpolation:

min

in it — Xsz = i(xi — X'w)2.

=

If the person is genuine, then there will exist a combination w?such that for all i, we have x;'
=~ X'w' i.e., all features can be faithfully reconstructed. Problematic, if however the new
X'w* + b}

b

. *
image x'has occlusions or is otherwise corrupted *i ~ where ~i =0 on

uncorrupted pixels but can take large and unpredictable values for corrupted pixels .

Nevertheless, one can compute the /least squares fit in the presence of such corruptions

The challenge is to do this without effort to identify the locations of the corrupted pixels.
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Figure 9.1: A corrupted image y can be interpreted as a combination of a clean image y

*

and
a corruption mask b* i.e., y = y* + b*. The mask encodes the locations of the corrupted pixels
as well as the values of the corruptions. The clean image can be (approximately) recovered as
an affine combination of existing images in a database as y* = Xw?". Face reconstruction and
recognition in such a scenario constitutes a robust regression problem. Note that the corruption
mask b* is sparse since only a few pixels are corrupted. Images courtesy the Yale Face Database
B.



ROBUST REGRESSION

Goal is to take a set of n (possibly) corrupted data points (xiyi)"._, and recover the

i 2
min ly — Xw —b||5,
wERP beR™ 2
i bl <k
underlying parameter vector w", Ibllo=

The variables b*, can be unbounded in magnitude and of arbitrary sign. However, we
assume that only a few data points are corrupted i.e., the vector b= [b*,, b",, ..., b" ]is

sparse ©b'S, < k (for as large a k as possible).

Note, it is impossible to recover the model wbif more than half the points are corrupted i.e., k >
n/2.

It can be seen that w?and supp(b?) =: S, i.e., the true model and the locations of the

L‘
uncorrupted points, are the two most crucial elements since given one, finding the other is

very simple.

Indeed, if someone were to magically hand us w", it is trivial to identify S« by simply

identifying data points where y, = x,'w=. On the other hand, given S, it is simple to obtain w"

by simply solving a least squares regression problem on the set of data points in the set S*
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namely,



Algorithm 11 AltMin for Robust Regression (AM-RR)

Input: Data X,y, number of corruptions k
Output: An accurate model w € R?

1 wle0,8 =[1:n—k|

2: fort=1,2,...do

3 witl « argmingerr Yjeg, (i — X, w)?
4
5

P S, s T, t+1Y2
St+1  argmin|gi—p_r 2ies(¥i —%; W)

. end for

6: return w

(0) AM-RR maintains a model estimate w' and an active setS,, [n] of points that are

deemed clean at the moment.

(1) Initially the active set S, is taken to be the first n-k points
(2) At every time step t,

(3) AM-RR first fixes the active set S, and updates the model w* (via least squares over

active set),
and then

(4) fixes the model w"' and updates the active set S,,, (by taking the n - k data points of S

with the smallest residuals (by magnitude) with respect to the updated model and designating

them to be the active set)

Robust Recovery Guarantee for AM-RR

Definition 9.1 (Subset Strong Convexity/Smoothness Property [Bhatia et al., 2015]). A matriz
X € R™7? is said to satisfy the ay-subset strong convexity (SSC) property and the [y -subset
smoothness property (SSS) of order k if for all sets S C [n] of size |S| < k, we have, for all
v ER?P,
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The SSC/SSS properties require that the design matrix X formed by taking any subset of k

pixels from the data set of n pixels act as an approximate isometry on all p dimensional
points.

[These properties are related to the traditional RSC/RSS properties and it can be shown

that RIP-inducing distributions over matrices also produce matrices that satisfy the SSC/SSS
properties, with high probability. ]

Theorem 9.1. Let X € R"*P satisfy the SSC property at order n — k with parameter o, i
and the SSS property at order k with parameter Sy such that Sy /o, — < \/51_‘_1. Let w* € RP
be an arbitrary model vector and y = Xw* 4+ b* where |b*||, < k is a sparse vector of possibly
unbounded corruptions. Then AM-RR yields an e-accurate solution |[w' —w*||, < € in no more

than O (log ”b*'lz) steps.

€

Untuitive Proof v

Since the algorithm uses only a subset of data points to estimate the model vector, it is essential that

smaller subsets of data points of size n — k (in particular the true subset of clean points Sx) also

allow the model to be recovered.

This is equivalent to requiring that the design matrices formed by smaller subsets of data points not

identify distinct model vectors. This is exactly what the SSC property demands.






