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Face Recognition ​: In biometrics, a fundamental problem is to identify if a new face image                               

belongs to that of a registered individual or not.         

Cast as a regression problem by trying to fit various features of the new image to                               

corresponding features of existing images of the individual in the registered database  
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Assume that images are represented as ​n​-dimensional feature vectors say, using simple                       

pixel-based features. Also assume that there already exist ​p images of the person in the                             

database.  

Represent the new image ​x​t​ ​ҽ R​n ​in terms of the database images X = [​x​1​, . . . , ​x​p​] ҽ R​n×p​ ​of 

that person.    One solution is to perform ​linear​ interpolation:

 

If the person is genuine, then there will exist a combination ​w​ӌ​ ​such that for all i, we have ​x​i​
t 

≈ X​i​w​ӌ ​    ​i.e., all features can be faithfully reconstructed.  Problematic, if however the new 

image  ​x​t ​has occlusions or is otherwise corrupted where  = 0   on 

uncorrupted pixels but can take large and unpredictable values for corrupted pixels . 

Nevertheless​, one can compute the ​least squares fit ​in the presence of such corruptions 

The ​challenge​ is to do this without effort to identify the locations of the corrupted pixels. 

 

 
2 



 

 
 

ROBUST   REGRESSϥON  

Goal is to take a set of n (possibly) corrupted data points (​x​i​,y​i​)​n​
i=1​ ​and recover the 

underlying parameter vector ​w​ӌ​,  

The variables ​b​ӌ​
i  ​can be unbounded in magnitude and of arbitrary sign. However, we 

assume that only a few data points are corrupted i.e., the vector ​b​ӌ​ ​= [​b​ӌ​
1​, ​b​ӌ​

2​, . . . , ​b​ӌ​
n​] is 

sparse Ӛ​b​ӌ​Ӛ​0​ ​≤ k (for as large a k as possible).  

Note, it is impossible​  ​to recover the model ​wʋӌ ​if more than half the points are corrupted i.e., k ≥ 

n/2.   

It can be seen that ​w​ӌ ​and supp(​b​ӌ​) =: S​ӌ​  i.e., ​the ​true​ model ​and ​the locations of the 

uncorrupted​ points​, are the ​two ​most crucial elements since given one, finding the other is 

very simple.  

Indeed, if someone were to ​magically hand us​ ​w​ӌ​, it is ​trivial ​to identify S​∗ ​by simply 

identifying data points where y​i ​= ​x​i​
 ​w​∗​. On the other hand, ​given​ S​∗​, it is ​simple to obtain​ ​w​ӌך

by simply solving a least squares regression problem on the set of data points in the set S​∗ 

namely, ​     
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(0)  AM-RR maintains a ​model estimate​ ​w​t​ and an ​active set ​S​t ​ְ  [n] of points that are 

deemed clean at the moment​.   

(1) Initially the ​active set ​S​1 ​ is taken to be the first n-k points  

      (2) At every time step t,  

      (3)  AM-RR ​first fixes the active set​ S​t ​ and ​updates the model ​w​t​ ​ ​(via least squares over 

active set)​,  

and ​then  

(4)  fixes the model​ ​w​t+1​ and ​updates the active set​ S​t+1​ (​by taking the n − k data points of S 

with the smallest residuals (by magnitude) with respect to the updated model and designating 

them to be the active set​ )  

 

Robust Recovery Guarantee for AM-RR   
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The SSC/SSS properties require that the ​design matrix ​X formed by taking any subset of ​k 

pixels from the data set of​ n​ pixels act as an ​approximate isometry​ on all ​p​ dimensional 

points.  

[These properties are related to the traditional RSC/RSS properties and it can be shown 

that ​RIP-inducing distributions over matrices​ also produce matrices that satisfy the SSC/SSS 

properties, with high probability. ] 

 

 

 

ϥntuitive Proof ʋ: 

Since the algorithm uses only a subset of data points to estimate the model vector, it is essential that 

smaller subsets of data points of size n − k (in particular the true subset of clean points S​∗​) also 

allow the model to be recovered.  

This is equivalent​ ​to requiring that the ​design matrices​ formed by smaller subsets of data points not 

identify distinct model vectors. This is exactly what the SSC property demands.  
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