1. Medium: The integer \(n \) is a solution to \(8^n + 4^n + 2^n + 1 = 4368 \). Then \(\cos\left(\frac{2n\pi}{3}\right) = \)
 a) \(-1\) b) \(-\sqrt{2}/2\) c) \(-1/2\) d) 0 e) \(\sqrt{3}/2\)

2. Easy: The smallest zero point of the function \(f = t\cos(t) + \sqrt{3}t\sin(t), \quad t > 0 \), is at
 a) \(\pi/2\) b) \(2\pi/3\) c) \(3\pi/4\) d) \(5\pi/6\) e) \(11\pi/6\)

3. Medium: If \(X + Y = 8, \quad \log_2(XY) = 2 \). Then \(Y = \)
 a) \(4 \pm 2\sqrt{3}\) b) \(5 \pm 3\sqrt{2}\) c) \(8 \pm 2\sqrt{3}\) d) \(6 \pm 6\sqrt{2}\) e) \(6 \pm 4\sqrt{7}\)

4. Medium: The sum \(S = \sum_{i=1}^{14} \frac{i}{2^i} = \frac{1}{2} + \frac{2}{2^2} + \ldots + \frac{14}{2^{14}} \) is equal to
 a) 1 b) \(\frac{255}{128}\) c) \(\frac{1023}{512}\) d) \(\frac{2047}{1024}\) e) \(\frac{4095}{4096}\)

5. Medium: Find the first three correct decimal of the following expression
 \[x = \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \ldots}}}}. \]
 a) 0.388 b) 0.395 c) 0.414 d) 0.424 e) 0.435

6. Medium: What is the sum of the squares of the integer solutions of the equation
 \[x^2 - 5x + 6 = 1. \]
 a) 13 b) 14 c) 15 d) 16 e) 17

7. Easy: Solve
 \[6^{1/x} + 3 \cdot 9^{1/x} = 2 \cdot 4^{1/x}. \]
 (a) \(-3\) (b) \(-2\) (c) \(-\frac{2}{3}\) (d) \(-1\) (e) 0

8. Easy: Find the units digit of \(5^{2023} + 6^{2023} + 9^{2023} \).
 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5

9. Medium: The equation
 \[\frac{1}{a} + \frac{1}{b} = \frac{n}{a+b} \]
 has a solution for some positive real numbers \(a, b \) if \(n \) is at least
 (a) 0 (b) 1 (c) 2 (d) 3 (e) 4

10. George wants to travel 2 miles at an average speed of 60 mph. George takes his time for the first mile
 and goes only 30 mph. How fast must he travel the second mile to average 60 mph?
 (a) 90 mph (b) 105 mph (c) 120 mph (d) 150 mph (e) None of the above.

11. Easy:
 Enrollment in the math club of a high school attended by several girls and boys doubled after the sponsor
 started bringing pizza to each meeting, and attendance by girls jumped by 50%. Question: What can be said
 about the percentage of female students attending this club?
 (a) Decreased by 25% (b) Stayed the same (c) Increased by 50% (d) Increased by 75% (e) Increased by
 100%
12. Easy: Find the product of the solutions for the equation:

\[25^{5x} = 125^{x^2+1} \]

a) \(-1\) b) \(0\) c) \(\frac{1}{3}\) d) \(1\) e) \(3\).

13. Easy: The sum of the roots of \(x^4 - 5x^2 + 4 = 0\) is

(a) \(-4\) (b) \(-2\) (c) \(0\) (d) \(3\) (e) \(5\)

14. Hard: Find the sum of the first 2023 terms of the sequence

\[\frac{\pi}{4}, \arctan\left(\frac{1}{3}\right), \arctan\left(\frac{1}{7}\right), \ldots, \arctan\left(\frac{1}{n^2 + n + 1}\right), \ldots \]

a) \(\pi/3\) b) \(\arctan(1011)\) c) \(\arctan(2023)\) d) \(\arctan(4044)\) e) \(\pi/2\).

15. Easy: What is \((e^{3\ln(x^2)})^3\) ?

a) \(\ln(27x^2)\) b) \(x^6\) c) \(27x^6\) d) \(x^{18}\) e) \(e^{9x^2}\).

16. Medium: The \(n!\) is the product of the first \(n\) natural numbers, i.e., \(n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n\). Then

\[\frac{2023!}{2021! + 2022!} \]

is equal to

a) \(1\) b) \(2021\) c) \(2022\) d) \(2023\) e) \(4046\).

17. Hard: The \(\triangle ABC\) is isosceles with \(AB = AC = 1\) and \(\angle A = 30^\circ\). Let \(\triangle BCD\) be an isosceles right triangle with \(\angle C = 90^\circ\), not overlapping with \(\triangle ABC\). Find the length of \(AD\).

(a) \(\frac{\sqrt{6}}{2}\) (b) \(\sqrt{3} - 1\) (c) \(\sqrt{4 - \sqrt{3}}\) (d) \(\sqrt{4 + \sqrt{3}}\) (e) \(\sqrt{3} + 1\)

(not to scale)
18. Hard: Let $[ABCD]$ and $[BEFG]$ be squares with A, B and E collinear points in this order and C and F on the same side of the line AE, and let $AB = 1$. Find the maximum of the $\tan(\angle ATD)$, where T is at the intersection of AF and DE.

(a) 1 (b) $4/3$ (c) $\sqrt{3}$ (d) 2 (e) $7/3$

![Diagram](not to scale)

19. Medium: The year is 2023. A time traveler can jump into the future or the past only a number of years equal with a divisor of 2023. He wants to attend the Gettysburg Address of President Lincoln in 1863. What is the smallest number of jumps that he should take? We assume that there are no waiting time between consecutive jumps and the actual event.

a) 2 b) 3 c) 4 d) 5 e) 6

20. A large software development company employs 100 computer programmers. Of them, 45 are proficient in Java, 30 in C#, 20 in Python, six in C# and Java, one in Java and Python, five in C# and Python, and just one programmer is proficient in all three languages above. Determine the number of computer programmers that are not proficient in any of these three languages.

(a) 14 (b) 16 (c) 18 (d) 20 (e) 22

21. Let $a = 799$ and $N = 80718$. Find a positive integer n so that the remainder of na, when divided by N, is equal to 1.

(a) 1012 (b) 2023 (c) 2122 (d) 4043 (e) 4243

22. Easy: One night, a 6-feet tall person is standing 20 feet from a 30 feet high light. How long is the person’s shadow?

(a) 3 feet (b) 4 feet (c) 5 feet (d) 6 feet (e) 7 feet

Answer: (c) Use similar triangles. Let x be the length of the person’s shadow. Observe that

$$\frac{x}{6} = \frac{x + 20}{30}.$$ It follows that the shadow is 5 feet long.

23. Hard: Suppose z_1, z_2, z_3 are the three roots of $z^3 - 18z - 8 = 0$. Simplify

$$A = \frac{(z_1 - z_2)^2(z_2 - z_3)^2(z_3 - z_1)^2}{200}.$$

(a) 108 (b) 150 (c) 216 (d) 312. (e) 427

24. Medium: Which of the following is nearest to the value of

$\sqrt{2021 \cdot 2023^2 \cdot 2025 + 4}$?

(a) $2023^2 - 2$ (b) $2023^2 - 1$ (c) 2023^2 (d) $2023^2 + 1$ (e) $2023^2 + 2$
25. Medium:
The $\triangle ABC$ has $AC = 3$ and $\angle A = 105^\circ$. Let M be the midpoint of AB and $\angle AMC = \angle CMD = \angle BMD = 60^\circ$, where D lies on BC. If $AM = x$, $CM = y$, and $DM = z$, find $xy + yz + zx$.

(a) $\frac{\sqrt{6} - \sqrt{2}}{2}$
(b) $\frac{\sqrt{6} + \sqrt{2}}{2}$
(c) 3
(d) $2\sqrt{3} + 2$
(e) 6