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Introduction
Bacterial infections caused by gram negative bacteria are particularly 
pernicious and difficult to treat because of increasing multi-drug 
resistance and shortage of industry research devoted to developing 
new antibiotics. Gram-negative bacteria have a reinforced cell wall 
composed of an outer membrane, peptidoglycan layer, and 
periplasm. These layers create challenges for developing an effective 
antimicrobial. The low financial returns have pushed most 
pharmaceutical companies away from this area of research leaving 
only universities to find novel solutions. 

Antimicrobial peptides (AMPs) are a natural defense mechanism of 
the body that have broad spectrum activity. Their cationic charges 
and hydrophobic components are essential to their mechanism of 
action. These features allow them to insert into pores on the 
bacterial membrane causing cytoplasmic leakage and ultimately cell 
death. 

Polymers inspired by AMPs show promise as an effective solution 
especially because bacteria show low propensity for developing 
resistance to these polymers.
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Materials and Methods
Gaussian Model Equations

Discrete Stretchable Shearable Worm-Like Chain Equations

Materials and Methods

Results Conclusion
We used a Monte Carlo Simulation with Self-Consistent Field 
Theory to model a cationic polymer and a lipid bilayer. We see
that there is a uptake of cholesterol in the inner and outer 
leaflet due to the presence of the polymer. However, the PS 
groups experience the strongest repulsion to the polymer 
because their negative charges interact strongly with the 
positively charged groups on the polymer.

The current theory for the polymer’s mechanism of action is 
that the cationic polymer is attracted to the anionic cell 
membrane and disrupts membrane function eventually leading 
to cell death.

Our current lipid membrane model is for a eukaryotic cell with a 
negatively charged inner leaflet. A prokaryotic cell has a 
negatively charged inner and outer leaflet.

The results are promising because PS (anionic lipid) had the 
highest levels of uptake (membrane disruption).
This indicates that a more negatively charged membrane 
(prokaryotic) would experience more significant disruption than 
a mammalian (eukaryotic) membrane. 

Future of Project
• Model a prokaryotic cell membrane that represents a 

gram-negative bacterial cell membrane well
• Model a polymer with facial amphiphilicity rather than an 

‘average’ hydrophobicity
• The experimental portion of this project is interested in 

testing monomers in addition to polymers so 
computational modeling for monomers will also be
necessary. 

• We also hope to compare the continuous worm-like chain 
model to the discretized work-like chain model. 

Monte Carlo Simulations
• Used to sample multiple times from a probability distribution
• Process

1. Random moves for the monomer subunits
2. Energy values calculated for each configurations
3. The move is accepted if the move leads to a decrease in energy, if the energy 

increases we check the Boltzmann factor to a random number to see if the move 
is accepted

4. Steps 1-3 are repeated
• Configurations that extended into the negative z axis were discarded
• Configurations that were not self-avoidant were also discarded
Script for Polymer Model and Lipid Bilayer Model
• written in Fortran and executed on the terminal
• Data was compiled on Microsoft Excel
• Models accounted for a single polymer interacting with the lipid bilayer

Gaussian Discretized Worm-Like Chain

continuous Discrete subunits

Integral of configurations Sum of configurations

• R is the average distance away from each monomer unit
• G(r) correlates the average distance of membrane

molecules (lipids, cholesterol) from the average position of 
the monomer units

• G(r)=1 represents the state of the lipid membrane when 
there is no polymer. 

• As r increases, the curve approaches 1 because the 
distance from the polymer is large enough that the lipid 
bilayer is relatively unimpacted by its presence.

• We only consider the monomer units in the leaflet of 
interest.

• Cholesterol in the inner and outer leaflet had around a 20% 
increase over the bulk density while phosphatidylserine 
(PS) molecules had around a 75% increase over the bulk 
density.
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Results

Polymer Facts 

• 50 monomer units
• Chi = 5k_BT
• Same hydrophobicity as lipid 

bilayer
• +1 charge on each unit

“Self-Consistent Field Theory and Its Applications.” Soft Matter /, Wiley-VCH,, 2005, 
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Including self-avoiding interactions stretches the chains. The smaller the chain, the greater the stretching it experiences.

xChol = 0.33, xPSM = 
0.33, xPOPC = 0.33

xChol = 0.25, xDOPS = 
0.35, xDOPE = 0.20, xPOPC
= 0.20 (Cytoplasm)
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