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Introduction
● Very little underwater cave exploration 

using robotics.
● We use the YOLOv5s CNN to detect 

stalagmites, stalactites, columns, and 
divers.

● Trained model for use on AQUA2 
underwater cave mapping missions.

Methods
● YOLOv5s trained on 20,000 hand 

labeled underwater cave images.
● Mosaic and HSV augmentations applied 

to input images.
● Trained weights to run on AQUA2 using 

camera feed as inputs.
● Output bounding box and class id fed to 

semantic mapping algorithm. 

Discussion
● Overall best performance came from 

using only Mosaic augmentation.
● More quantity and variation of training 

data will improve performance.
● For the purposes of aiding the semantic 

mapping algorithm, current performance 
is satisfactory.

Fig. 1: AQUA2 attempting an obstacle 
course at University of South Carolina [1].
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Fig. 2: YOLOv5s output frame consisting of bounding 
boxes, class predictions, and confidence values.

Conclusion
● A major limitation of this model is the 

lack of training data quantity and quality.
● In the future when AQUA2 is performing 

cave diving missions collected data can 
be used for further training.

● Next step is to modify the network 
structure to tailor it to the underwater 
cave environment.

Experiment Results

● Using HSV augmentation reduced overall mAP 
but increased diver specific detection.

● Visual inspection of Stalagmite and Stalactite 
detection is promising.

● Column detection confused in some instances 
where ceiling and floor of underwater cave not 
visible.

● Diver detection weak due to lack of training data 
and variation in equipment across caves.

Fig. 4: YOLOv5s training performance metrics. 

Fig. 3: YOLOv5s validation confusion matrix.

Fig. 5: Distribution of classes in training data.


