SERIES & PARALLEL RESISTORS

OBJECTIVE

To explore the relationship between voltage and current in networks of resistors connected in series and parallel. By the end of the lab you should have constructed **five** simple circuits.

PROCEDURE

Step 1:

a) Construct a circuit with two - 1 k Ω resistor in parallel.

- Record the current through, and voltage across, each resistor as well as the entire network.
- Using the ohmmeter, measure the equivalent resistance of the resistor's network.
- b) Repeat for the two 1 k Ω resistor in series.

Step 2:

It is possible to construct several networks containing series and/or parallel combinations of resistors that all have the same equivalent resistance.

a) Construct a network with a total resistance of 250 Ω from two 1 k Ω resistors and one 500 Ω resistor

- Using the ohmmeter, measure the equivalent resistance of the resistor's network.
- Record the current through and voltage across each resistor, as well as the entire network.

b) Construct a network with a total resistance of 250 Ω from three 500 Ω resistors and one 1 k Ω resistor. Repeat your measurements.

Step 3:

Construct a network with a total resistance of 1 k Ω from two 1 k Ω resistors and one 500 Ω resistor. Repeat your measurements.

GRAPHS AND DIAGRAMS

Make schematic diagrams of each configuration.

QUESTIONS AND CALCULATIONS

For each configuration:

- 1. Using the given values of the resistors, compute the theoretical equivalent resistance. Compare the measured value obtained with the ohmmeter to that theoretical equivalent resistance.
- 2. **Using Ohm's law**, verify that the measured currents and voltages matches the given values of each resistors, as well as the theoretical equivalent resistance.

Last name: First name:

DATA SHEETS

Step 1 b) two - 1 k Ω resistor in series									
Circuit diagram:				Current (mA)	Voltage (V)				
			R1						
			R ₂						
			Battery						
		-							
				Given value	Measured value				
$R_1 = 1 k\Omega$	$R_2 = 1 k\Omega$	F	ર _{eq} (Ω)	2000					

Last name: First name:

	Step 2 b)	one 1 k Ω resistor and three 500 Ω	resisto	rs		
Circuit diagram:				Currer (mA)	t Voltage (V)	
			R1			
			R_2			
			R ₃			
			R4			
			Вс	ittery		
$R_1 = 1 k\Omega$	$R_2 = -$	500 Ω			Given value	Measured value
$R_3 = 500 \Omega$	$R_4 = 5$	500 Ω		R _{eq} (Ω)	250	

Last name: First name:

