SERIES \& PARALLEL RESISTORS

OBJECTIVE

To explore the relationship between voltage and current in networks of resistors connected in series and parallel. By the end of the lab you should have constructed five simple circuits.

PROCEDURE

Step 1:

a) Construct a circuit with two - $1 \mathrm{k} \Omega$ resistor in parallel.

- Record the current through, and voltage across, each resistor as well as the entire network.
- Using the ohmmeter, measure the equivalent resistance of the resistor's network.
b) Repeat for the two - $1 \mathrm{k} \Omega$ resistor in series.

Step 2:

It is possible to construct several networks containing series and/or parallel combinations of resistors that all have the same equivalent resistance.
a) Construct a network with a total resistance of 250Ω from two $1 \mathrm{k} \Omega$ resistors and one 500Ω resistor

- Using the ohmmeter, measure the equivalent resistance of the resistor's network.
- Record the current through and voltage across each resistor, as well as the entire network.
b) Construct a network with a total resistance of 250Ω from three 500Ω resistors and one $1 \mathrm{k} \Omega$ resistor. Repeat your measurements.

Step 3:

Construct a network with a total resistance of $1 \mathrm{k} \Omega$ from two $1 \mathrm{k} \Omega$ resistors and one 500Ω resistor. Repeat your measurements.

GRAPHS AND DIAGRAMS

Make schematic diagrams of each configuration.

QUESTIONS AND CALCULATIONS

For each configuration:

1. Using the given values of the resistors, compute the theoretical equivalent resistance. Compare the measured value obtained with the ohmmeter to that theoretical equivalent resistance.
2. Using Ohm's law, verify that the measured currents and voltages matches the given values of each resistors, as well as the theoretical equivalent resistance.

Last name: \qquad First name: \qquad

DATA SHEETS

Step 1 b) two - $1 \mathrm{k} \Omega$ resistor in series				
Circuit diagram:			Current (mA)	Voltage (V)
		R_{1}		
		R_{2}		
		Battery		
	$\mathrm{R}_{2}=1 \mathrm{k} \Omega$		Given value	Measured value
$\mathrm{R}_{1}=1 \mathrm{k} \Omega$		$\operatorname{Req}(\Omega)$	2000	

First name:

Step 2 a) two $1 \mathrm{k} \Omega$ resistors and one 500Ω resistor

Step 2 b) one $1 \mathrm{k} \Omega$ resistor and three 500Ω resistors

Circuit diagram:

	Current (mA)	Voltage (V)
R_{1}		
R_{2}		
R_{3}		
R_{4}		
Battery		

$$
\mathrm{R}_{2}=500 \Omega
$$

$$
R_{4}=500 \Omega
$$

	Given value	Measured value
Req (Ω)	250	

Last name: \qquad First name:

Step 3 two $1 \mathrm{k} \Omega$ resistors and one 500Ω resistor
Circuit diagram:

	Current (mA)	Voltage (V)
R_{1}		
R_{2}		
R_{3}		
Battery		

$R_{1}=1 \mathrm{k} \Omega$
$R_{2}=1 \mathrm{k} \Omega$
$R_{3}=500 \Omega$

	Given value	Measured value
Rea (Ω)	1000	

