1. Given the following data for a function \(f : \mathbb{R} \to \mathbb{R} \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-1</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

(a) Construct the quadratic interpolation polynomial \(p_2(x) \) which interpolates the data.
(b) If the function being interpolated was in fact \(f(x) = x^3 + 2x^2 - 1 \), derive a tight upper bound on the error in using \(p_2(x) \) as an approximation to \(f(x) \) on \([0, 2]\).

2. This problem concerns orthogonal polynomials and Gaussian quadratures.
(a) Find \(\{p_0, p_1, p_2\} \) such that \(p_i \) is a polynomial of degree \(i \) and these polynomials are orthogonal to each other on \([0, \infty)\) with respect to the weight function \(w(x) = e^{-x} \).
(b) Find the points and weights \(\{(x_i, w_i)\}_{i=1}^{2} \) of the 2-point Gaussian quadrature

\[
\int_{0}^{\infty} f(x) e^{-x} dx \approx w_1 f(x_1) + w_2 f(x_2).
\]

3. Consider the following Runge-Kutta method for solving the initial value problem \(y' = f(t, y), y(0) = y_0 \) where \(h \) is the time step size:

\[
y_{n+1} = y_n + \alpha hf(t_n, y_n) + \frac{h}{2} f(t_n + \beta h, y_n + \beta hf(t_n, y_n)).
\]

(a) For what values of \(\{\alpha, \beta\} \) is the method consistent?
(b) For what values of \(\{\alpha, \beta\} \) is the method stable?
(c) For what values of \(\{\alpha, \beta\} \) is the method most accurate?

4. Consider the 3-step Adams-Bashforth method,

\[
y_{n+1} = y_n + h \left[\frac{23}{12} f(t_n, y_n) - \frac{4}{3} f(t_{n-1}, y_{n-1}) + \frac{5}{12} f(t_{n-2}, y_{n-2}) \right]
\]

for solving the initial value problem \(y' = f(t, y), y(0) = y_0 \).
(a) Derive this method based on \(y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(t, y) dt \) and the polynomial interpolation approximation of \(f \) on \(t_n, t_{n-1}, t_{n-2} \).
(b) Determine the order of accuracy of this linear multistep method.
(c) Is the method convergent? Justify your answer.

5. This problem concerns condition numbers and system stability.
(a) Let \(A \) be an \(n \times n \) nonsingular matrix. We consider the solution of the linear
system $Ax = b$. Suppose we have an approximate solution x^* to the exact solution x of this system, and let $r = b - Ax^*$ be the residual. Prove

$$\frac{\|x - x^*\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}$$

where $\| \cdot \|$ is any vector norm, and $\kappa(A)$ is the condition number of A with respect to the induced matrix norm.

(b) For the matrix

$$A = \begin{bmatrix} 5.4 & 0.6 & 2.2 \\ 0.6 & 6.4 & 0.5 \\ 2.2 & 0.5 & 4.7 \end{bmatrix},$$

compute an upper bound for the condition number $\kappa_2(A)$, using the estimates of the eigenvalues by the Gershgorin Circle Theorem.

6. Prove that every Hermitian, positive definite matrix A (i.e., $x^*Ax > 0$ for all $x \neq 0$) has a unique Cholesky factorization (i.e., $A = R^*R$ with $r_{jj} > 0$).

7. Compute one step of the QR algorithm (for computing eigenvalues) with the matrix

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}.$$

(a) Without shift.
(b) With shift $\mu = 1$.

8. Let A be a real symmetric positive definite matrix and given a linear system of equations $Ax = b$. Consider an iterative solution strategy of the form

$$x_{k+1} = x_k + \alpha_k r_k,$$

where x_0 is arbitrary, $r_k = b - Ax_k$ is the residual and α_k is a scalar parameter to be determined.

(a) Derive an expression for α_k such that $\|r_{k+1}\|_2$ is minimized as a function of α_k. Is this expression always well-defined and nonzero?

(b) Show that with this choice

$$\frac{\|r_k\|_2}{\|r_0\|_2} \leq \left(1 - \frac{\lambda_{\min}(A)}{\lambda_{\max}(A)}\right)^{k/2}$$

where $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ denote the minimal and maximal eigenvalues of A respectively.